Caractérisation et Modélisation des Absorbants Acoustiques pour la réduction du bruit des parties chaudes des turbomachines

Objectif : mettre en œuvre des absorbants acoustiques large bande et optimiser leur propriétés pour la réduction du bruit des parties chaudes des turbomachines

Moyens :

- Élaboration et Caractérisation de matériaux poreux présentant une variété de microstructures
- Développement, validation et exploitation d'un code permettant de calculer les impédances caractéristiques de telles microstructures poreuses

Banque de données expérimentales

confrontation

Modélisations numériques

Avantages attendus des absorbants poreux

Zone de

rétrécissement

Pertes

visqueuses maximales

Physique des absorbants poreux

Modèle « standard » (Zwikker & Kosten, Allard, Attenborough...)

- La dissipation provient de pertes thermiques et mécaniques
- L'écoulement (acoustique) peut-être considéré comme incompressible

ONERA

Physique des absorbants poreux

Les paramètres homogénéisés du modèle « standard »

- Le rayon moyen des pores
- La résistance à l'écoulement
- La porosité

- La tortuosité
- Le modèle « standard » permet d'ajuster des mesures expérimentales d'impédance
- Il suggère que différentes classes de matériaux peuvent conduire à des comportements différents à paramètres macroscopiques constants
- Il ne permet pas de déterminer *a priori* ces comportements

Caractérisation

Mise en évidence des relations implicites entre paramètres macroscopiques

- Le modèle « standard » permet la constitution d'abaques sur lesquelles on peut dimensionner *a posteriori* des systèmes absorbants
- Il ne permet pas de prédire les tendances sur de nouvelles classes de matériaux

Caractérisation

Exemple d'abaque

ONERA

Réalisation d'un code aux éléments finis I - Homogénéisation et choix des équations

•Le champ de pression macroscopique p₀ constitue un terme source homogène sur une cellule élémentaire

•On aboutit à un système où le problème thermique et le problème visqueux sont découplés

ONERA

Réalisation d'un code aux éléments finis *II - Formulation faible et implémentation numérique*

A - Équation de Navier-Stokes linéarisée :

- Utilisation du tenseur des déformations pour abaisser l'ordre des intégrants
- Projection sur des fonctions test de type vitesse

$$\eta \Delta_{yy} \mathbf{v}_0 - \nabla_y \mathbf{p}_1 = 0 \Leftrightarrow \operatorname{div} \mathbf{\sigma} = 0 \quad \operatorname{avec} \quad \left\{ \begin{array}{c} \mathbf{\sigma} = -\mathbf{p}_1 \mathbf{\bar{I}} + 2 \eta \mathbf{\bar{d}}(\mathbf{v}_0) \\ \mathbf{\bar{d}} = \frac{1}{2} \left(\nabla \mathbf{v}_0 + {}^t (\nabla \mathbf{v}_0) \right) \right. \\ \left. \mathbf{O} p \text{ for ation de projection} \quad \Longrightarrow \quad \left\langle \mathbf{v}, \operatorname{div} \mathbf{\sigma} \right\rangle + i \omega \rho \left\langle \mathbf{v}, \mathbf{v}_0 \right\rangle = \left\langle \mathbf{v}, \nabla_x \mathbf{p}_0 \right\rangle \right. \\ \left. \left. \left\langle u, v \right\rangle = \int_{Y} u \mathbf{v} d\mathbf{v} \mathbf{v} \right\rangle \right\}$$

Abaissement de l'ordre

$$-\int_{Y} \left(-\mathbf{p}_{1} \mathbf{\bar{I}} + 2\eta \mathbf{\bar{d}}(\mathbf{v}_{0})\right) : \mathbf{d}^{*} d\Omega + i\omega\rho \int_{Y} \mathbf{v}_{0} \cdot \mathbf{v}^{*} d\Omega = \int_{Y} \nabla_{x} \mathbf{p}_{0} \cdot \mathbf{v}^{*} d\Omega$$

Réalisation d'un code aux éléments finis II - Formulation faible et implémentation numérique

B - Équation d'incompressibilité :

- Utilisation du tenseur des déformations
- Projection sur des fonctions test de type pression

$$\int_{Y} \operatorname{div}(\mathbf{v}_{0}) \cdot \mathbf{p}^{*} \mathrm{d}\Omega = 0 \Leftrightarrow \int_{Y} \mathbf{p}^{*} \mathbf{I} : \mathbf{d}(\mathbf{v}_{0}) \, \mathrm{d}\Omega = 0$$

C - Équation thermique :

- Projection sur des fonctions test de type température
- Intégration par partie (abaissement de l'ordre)

$$-\kappa \int_{Y} \nabla \mathbf{T_0} \cdot \nabla \mathbf{T}^* d\Omega + i\omega\rho c_p \int_{Y} \mathbf{T_0} \quad \mathbf{T}^* d\Omega = i\omega \int_{Y} \mathbf{p_0} \quad \mathbf{T}^* d\Omega$$

Réalisation d'un code aux éléments finis II - Formulation faible et implémentation numérique

D – Éléments et ordres d'interpolation utilisés:

- éléments tétraédriques
- géométrie P1
- pression P1 vitesse P2
 - $rac{10n P1}{se P2}$ Respect des conditions de stabilité
- température P2 (*P1 aurait été suffisant mais P2 permet de réutiliser la même structure de code que pour le problème visqueux*)

E – Projection sur les éléments et obtention de systèmes matriciels locaux

 $\begin{pmatrix} K_1 - K_3 | K_2 & 0 \\ |K_3| & K_1 & 0 & K_2 \\ {}^{t}K_2 & 0 & 0 & 0 \\ 0 & {}^{t}K_2 & 0 & 0 \end{pmatrix} \begin{pmatrix} V' \\ V'' \\ P' \\ P'' \end{pmatrix} = \begin{pmatrix} D_1 \\ 0 \\ 0 \\ 0 \end{pmatrix}$

 $\begin{pmatrix} \mathbf{K}_5 - |\mathbf{K}_6| \\ |\mathbf{K}_6| & \mathbf{K}_5 \end{pmatrix} \begin{pmatrix} \mathbf{T}' \\ \mathbf{T}'' \end{pmatrix} = \begin{pmatrix} \mathbf{0} \\ |\mathbf{D}_2| \end{pmatrix}$

F – Agrégation et inversion du système (méthode directe ou indirecte)

Réalisation d'un code aux éléments finis IV – Validation du calcul de perméabilités

- Choix d'une géométrie pour laquelle on connaît une solution analytique
- Maillage avec I-deas®
- Résolution des problèmes visqueux et thermiques (calcul des champs p_1 , v_0 et T_0 des développements asymptotiques)
- Obtention des perméabilités visqueuses et thermiques

Géométrie calculée : les zones hachurés sont celles où l'onde se propage et l'aire blanche représente le squelette rigide.

e	mesh	Number of elements	Number of nodes
30	5	3545	6466
	7	1456	2873
	10	506	1150
	15	244	620
9	2	15998	26910
	5	1256	2598
	7	546	1274
	10	180	504
3	2	6289	12629

Réalisation d'un code aux éléments finis IV – Validation du calcul de perméabilités

- A Perméabilité visqueuse : k_{zz}
- comportement parfait à haute fréquence pour tout les maillages et toutes les épaisseurs
- précision croissante avec le maillage à basse fréquence sur k' mais
 - écart systématique sur k''

Problème due à la routine d'inversion itérative

ONERA

Réalisation d'un code aux éléments finis IV – Validation du calcul de perméabilités

Réalisation d'un code aux éléments finis IV – Validation du calcul de perméabilités

- **B** Perméabilité thermique : k_t
- comportement parfait à toute fréquence pour tout les maillages et toutes les épaisseurs

• précision croissante avec le maillage

ONERA

Réalisation d'un code aux éléments finis IV – Validation du calcul de perméabilités

- C Impédance de milieu
 - Les courbes analytiques et numériques sont confondues

ONERA

Conclusion & Perspectives

- L'analyse des mesures par les modèles de milieux poreux permet la constitution d'abaques caractéristiques des familles de matériaux ; Cela permet d'effectuer des dimensionnements.
- Nous avons mis au point et validé un **code de calcul de l'impédance** de microstructures poreuses pour permettre une **démarche prédictive.**

• Dans un futur proche, le code sera exploité afin de dégager les **tendances caractéristiques** des microstructures les plus habituelles des milieux poreux.

 Ces prédictions seront confrontées aux résultats fournis par les mesures ; Elle devraient à terme servir à orienter les recherches vers les classes de matériaux les plus performants.