Département Enveloppe et Revêtements

Division HygroThermique des Ouvrages

N° affaire: 10-099

Le 26 avril 2011

Réf. DER/HTO 2011-100-AD/LS

CALCUL DE PONTS THERMIQUES DE LIAISON AVEC FACADE F4

Version 1

<u>Demandeur de l'étude :</u>

SAINT GOBAIN ISOVER

1 rue Gardénat Lapostol

92282 SURESNES CEDEX

Auteur *	Approbateur	Vérificateur(s)
A. DELAIRE	S. FARKH	L. SARRAZIN

* Tél.: 01.64.68.88.64

La reproduction de ce rapport d'étude n'est autorisée que sous la forme de fac-similé photographique intégral, sauf accord particulier du CSTB.

Ce rapport d'étude comporte 42 pages dont 12 pages d'annexes.

CONTENU

l.	OBJECTIF	DE L'ETUDE	4
II.	DESCRIPT	ION SUCCINCTE	5
	II.1 Config	guration 1 : Coefficient Up égal à 0,10 W/(m².K)	7
	II.2 Confiç	guration 2 : Angle rentrant	7
	II.3 Confiç	guration 3 : Angle sortant	8
	II.4 Confiç	guration 4 : Liaison Façade F4 / Acrotère isolé	9
	II.5 Confiç	guration 5 : Liaison Façade F4 / Plancher bas isolé sous chape	10
	II.6 Confiç	guration 6 : Liaison Façade F4 / Plancher intermédiaire	11
	II.7 Confiç	guration 7 : Liaison Façade F4 / Console balcon	12
III.	METHODO	DLOGIE	13
	III.1 Princi	De	13
	III.2 Règle	s de calcul	13
	III.3 Hypot	hèses	13
	III.3.1	Géométrie	13
	III.3.2	Conductivité thermique des matériaux	14
	III.3.3	Conditions aux limites	15
	III.4 Formu	ıles	16
	III.4.1 intégre	Coefficient de transmission surfacique global Up de la paroi ponts t és pris en compte	•
	III.4.2	Pont thermique de liaison au niveau d'un angle sortant ou rentrant	18
	III.4.3	Pont thermique de liaison entre la façade F4 et une paroi horizontale	19
	III.4.4	Pont thermique de liaison entre la façade F4 et un balcon désolidarisé sur	console
			21
IV.	RESULTAT	TS	24
	IV.1 Confiç	guration 1 : Coefficient U _p égal à 0,10 W/(m².K)	24

IV.2 Configuration 2 : Angle rentrant	25
IV.3 Configuration 3 : Angle sortant	25
IV.4 Configuration 4 : Liaison Façade F4 / Acrotère isolé	26
IV.5 Configuration 5 : Liaison Façade F4 / Plancher bas isolé sous chape	27
IV.6 Configuration 6 : Liaison Façade F4 / Plancher intermédiaire	29
IV.7 Configuration 7 : Liaison Façade F4 / Console balcon	29

I. OBJECTIF DE L'ETUDE

L'objectif de cette étude est d'étudier pour le compte de la société SAINT GOBAIN ISOVER les ponts thermiques de liaison entre la façade F4 et d'autres parois d'un bâtiment.

Cette affaire vient en complément des configurations déjà étudiées lors des études 09-070 (REF DER/HTO 2009-245-AD/LS), 09-090 (REF DER/HTO 2010-011-AD/LS Version 3) et 09-101 (REF DER/HTO 2010-007-AD/LS).

Conformément à la demande de la société SAINT GOBAIN-ISOVER et en accord avec le CSTB, la configuration de liaison entre une façade F4 et un acrotère métallique a été remplacée par une optimisation de l'épaisseur d'isolant côté intérieur afin d'obtenir un coefficient de transmission surfacique global de 0,10 W/(m².K).

L'étude présente les résultats suivants pour chaque variante étudiée :

- Coefficients de transmission thermique surfacique U_p globale de la paroi, compte tenu des dépenditions surfaciques en partie courante, et des ponts thermiques intégrés du procédé,
- Coefficients ψ de la liaison façade / façade au niveau d'un angle rentrant,
- Coefficients ψ de la liaison façade / façade au niveau d'un angle sortant,
- Coefficients ψ de la liaison façade / acrotère isolé,
- Coefficients ψ de la liaison façade / plancher bas isolé sous chape,
- Coefficients ψ de la liaison façade / plancher intermédiaire,
- Coefficients ψ de la liaison façade / console balcon.

Cette étude ne traite que de l'aspect thermique du procédé et ne préjuge en rien de son aptitude à l'emploi.

II. DESCRIPTION SUCCINCTE

Le procédé étudié est un système de façade ventilée avec parement extérieur. Le système se compose de différents éléments de l'intérieur vers l'extérieur :

- Deux plaques de plâtre BA13 de 12,5 mm d'épaisseur chacune,
- Une lame d'air non ventilée d'épaisseur 17,5 mm,
- Une couche d'isolant ISOCONFORT 32 côté intérieur de 80, 100, 120 ou 140 mm d'épaisseur fixée à l'aide de fourrures métalliques horizontale et verticale et d'un appui Optima2,
- Une couche d'isolant ISOFACADE 35 ou ISOFACADE 32 côté extérieur de 120 mm d'épaisseur fixée entre ossatures métalliques en U,
- Un parement extérieur fixé au système à l'aide de profilés en Z.

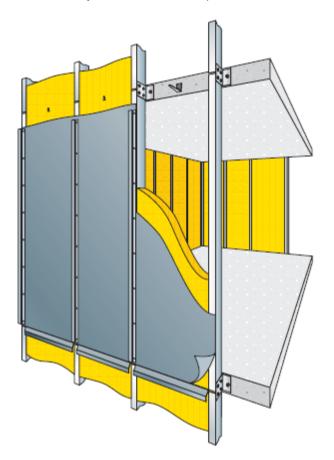


Figure 1 : Détail du système étudié

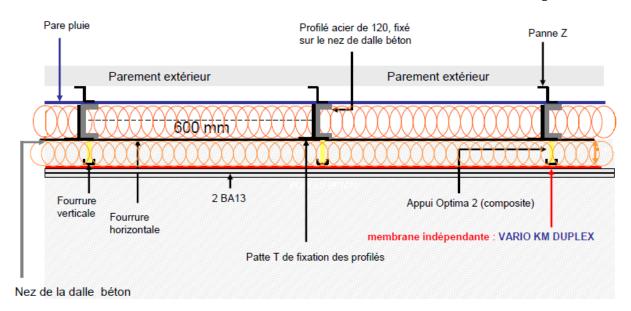


Figure 2 : Coupe horizontale de la façade

Des pattes de fixation fixées sur la dalle de plancher maintiennent l'isolant extérieur entre les ossatures métalliques en U.

L'impact d'une gaine technique de 35 mm entre la fourrure verticale et les parements plâtre sera étudié pour chaque configuration de liaison et pour le calcul des ponts thermiques intégrés à la paroi.

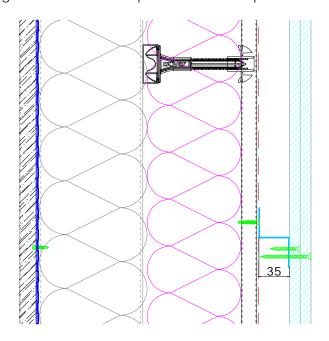


Figure 3 : Façade F4 avec gaine technique

Une description détaillée des éléments de fixation est donnée en annexe.

II.1 Configuration 1 : Coefficient Up égal à 0,10 W/(m².K)

Cette configuration consiste en une optimisation de l'épaisseur d'isolant côté intérieur afin que le coefficient de transmission surfacique global Up de la paroi, ponts thermiques intégrés pris en compte, soit égal à 0,10 W/(m².K).

II.2 Configuration 2 : Angle rentrant

La liaison entre deux parois verticales de façade F4 au niveau d'un angle rentrant est représentée sur le schéma suivant :

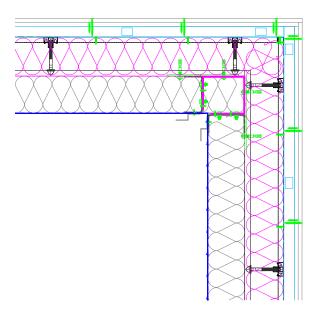


Figure 4: Liaison Façade F4 - Angle rentrant

Deux profilés métalliques, de 150 mm de hauteur, sont placés à la liaison entre les isolants côté extérieur afin de renforcer l'angle.

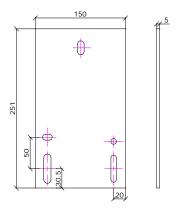


Figure 5 : Dimensions de la platine d'angle F4

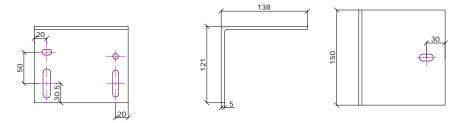


Figure 6 : Dimensions de l'équerre d'angle F4

II.3 Configuration 3 : Angle sortant

La liaison entre deux parois verticales de façade F4 au niveau d'un angle sortant est représentée sur le schéma suivant :

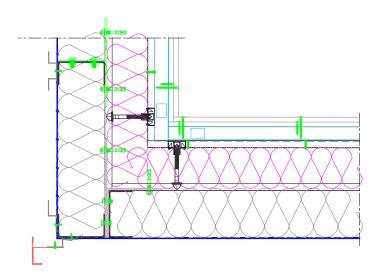


Figure 7: Liaison Façade F4 - Angle sortant

Une pièce de renfort d'angle, de 100 mm de hauteur, est placée au niveau de la liaison entre les isolants côté extérieur. Elle est associée à deux platines d'angle F4 dont les dimensions sont précisées sur la figure 5.

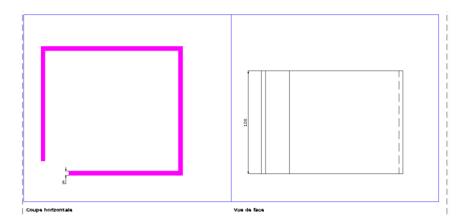


Figure 8 : Dimensions du renfort d'angle

II.4 Configuration 4 : Liaison Façade F4 / Acrotère isolé

La liaison étudiée correspond à la jonction entre la façade F4 et un acrotère béton isolé.

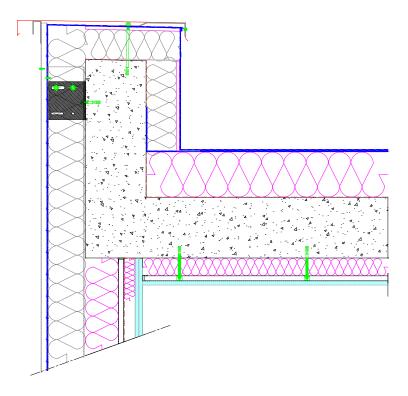


Figure 9 : Liaison Façade F4 / Acrotère isolé

La dalle béton de 20 cm d'épaisseur est isolée par le dessus par 150 mm de l'isolant PANOTOIT CONFORT 37. Un faux plafond sous la dalle complète l'isolation du plancher haut à l'aide de 60 mm d'ISOCONFORT 32 et d'une plaque de plâtre. Une variante a été réalisée en remplaçant le PANOTOIT CONFORT 37 par 220 mm d'EPSITOIT 20.

L'acrotère est isolé à l'aide de 100 mm d'isolant ROOFMATE LG-X.

Un bourrage d'isolant de conductivité thermique égale à 0,038 W/(m.K) est réalisé dans la gaine technique (lorsqu'il y en a une) à la jonction entre l'isolation intérieure et le faux-plafond. L'épaisseur d'isolant en bourrage est égale à l'épaisseur totale du faux-plafond.

II.5 Configuration 5 : Liaison Façade F4 / Plancher bas isolé sous chape

La liaison étudiée entre la façade F4 et un plancher bas isolé sous chape est représentée sur le schéma ci-dessous :

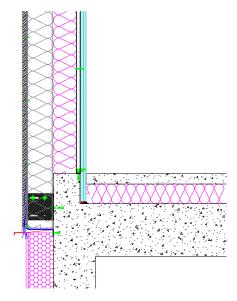


Figure 10 : Liaison Façade F4 / Plancher bas isolé sous chape avec 93 mm d'isolant EPS SOL PLUS

Le mur de soubassement est isolé à l'aide de 100 mm de ROOFMATE LG-X.

Le plancher bas est isolé sous chape à l'aide de 93 mm d'isolant EPS SOL PLUS. La chape a une épaisseur de 50 mm. La dalle du plancher bas a une épaisseur de 220 mm.

Un bourrage d'isolant de conductivité thermique égale à 0,038 W/(m.K) est réalisé dans la gaine technique (lorsqu'il y en a une) comme indiqué sur la figure 10.

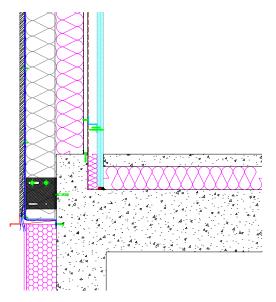


Figure 11 : Liaison Façade F4 / Plancher bas isolé sous chape avec gaine technique

II.6 Configuration 6 : Liaison Façade F4 / Plancher intermédiaire

La liaison étudiée correspond à la jonction entre la façade F4 et un plancher intermédiaire associé à un faux-plafond isolé.

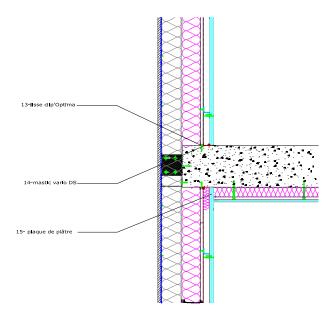


Figure 12 : Liaison Façade F4 / Plancher intermédiaire avec faux-plafond isolé

L'épaisseur de la dalle de plancher en béton est de 220 mm.

Des pattes de fixations, désignées « Maxi PB Fix », fixées sur la dalle de plancher renforcent le maintien de l'isolant côté extérieur.

Un faux plafond sous la dalle est isolé à l'aide de 60 mm d'ISOCONFORT 32 et d'une plaque de plâtre.

Un bourrage d'isolant de conductivité thermique égale à 0,038 W/(m.K) est réalisé dans la gaine technique (lorsqu'il y en a une) à la jonction entre l'isolation intérieure et le faux-plafond. L'épaisseur d'isolant en bourrage est égale à l'épaisseur totale du faux-plafond.

II.7 Configuration 7 : Liaison Façade F4 / Console balcon

Le balcon est désolidarisé de la façade. La liaison mécanique entre ce dernier et la structure est assurée par des poutres en béton de 220 mm de hauteur et 200 mm de largeur.

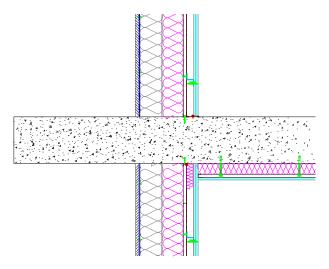


Figure 13 : Liaison Façade F4 / Console balcon

III. METHODOLOGIE

III.1 Principe

Le calcul est réalisé par modélisation numérique en tridimensionnel et consiste à évaluer les flux de chaleur transmise à travers le procédé de l'ambiance intérieure vers l'extérieur et déterminer ensuite les coefficients de transmission thermique U, ψ et χ . Les hypothèses de calcul sont fixées par les règles de calcul en vigueur.

III.2 Règles de calcul

Toutes les simulations ont été effectuées conformément aux règles Th-Bât édition 2007.

III.3 Hypothèses

III.3.1 Géométrie

Les modèles géométriques 3D servant de base pour les calculs sont directement issus des informations transmises au CSTB par la société SAINT GOBAIN ISOVER.

Un écrasement de l'isolant côté intérieur a été modélisé au niveau de la fourrure horizontale :

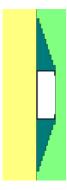


Figure 14 : Modèle avec écrasement de l'isolant au niveau de la fourrure horizontale

L'appui Optima2 a été modélisé par des sections rectangulaires :

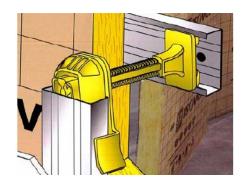


Figure 15 : Modélisation de l'appui Optima

Cette hypothèse n'a aucun impact sur le résultat final.

Aucune autre hypothèse signifiante n'a été adoptée en ce qui concerne la simplification de la géométrie des éléments.

III.3.2 Conductivité thermique des matériaux

Matériaux	Conductivités thermiques W/(m.K)	Sources
Plaque de plâtre à parement de carton	0.25	
Béton	2	Th-U
Acier (fourrures, profilés, fixations)	50	Fascicule2/5
Laine de verre (bourrage en faux- plafond et plancher bas)	0.038(1)	1 43313413273
Polyamide renforcé (Optima2)	0.3	
ISOFACADE 32	0.032	ACERMI N°08/018/544
ISOFACADE 35	0.035	ACERMI N°08/018/542
ISOCONFORT 32	0.032	ACERMI N°05/018/384
EPS SOL PLUS	0.031	ACERMI N°08/018/503
ROOFMATE LG-X	0.029	ACERMI N°03/013/203
EPSITOIT 20	0.036	ACERMI N°06/018/411
PANOTOIT CONFORT 37	0.037	ACERMI N°09/018/582
Cavités d'air	$\lambda^{(2)}$	Norme CEN 6946

 $^{^{(1)}}$: Valable pour une laine de verre de masse volumique sèche comprise entre 40 et 80 kg/m 3

Tableau 1 : Conductivités thermiques des matériaux

^{(2) :} Conductivité thermique équivalente

III.3.3 Conditions aux limites

Conditions aux limites	Température d'ambiance (°C)	Coefficient d'échange superficiel (W/(m².K))
Ambiance intérieure avec flux horizontal	20	7,7
Lame d'air ventilée côté extérieur	0	7,7
Ambiance intérieure avec flux vertical ascendant	20	10
Ambiance intérieure avec flux vertical descendant	20	5,9
Ambiance extérieure avec flux vertical descendant	0	5,9
Autres ambiances extérieures	0	25

Tableau 2: Conditions aux limites

III.4 Formules

III.4.1 Coefficient de transmission surfacique global Up de la paroi ponts thermiques intégrés pris en compte

a. Le coefficient de transmission global de la paroi U_p se calcule en fonction du coefficient surfacique en partie courante U_c et des coefficients linéiques et ponctuels ψ et χ des ponts thermiques intégrés :

$$U_p = U_c + \frac{\sum_i \psi_i . L_i + \sum_j \chi_j}{A} \quad \text{W/(m.K),}$$

avec:

- U_c: Coefficient de transmission thermique en partie courante, en W/(m².K),

- ψ_i : Coefficient linéique du pont thermique intégré i, en W/(m.K),

- L_i: Linéaire du pont thermique intégré i, en m,

- χ,: Coefficient linéique du pont thermique intégré j, en W/K,

- A: Surface totale de la paroi, en m².

b. Le calcul du coefficient U_c de transmission thermique en partie courante de la paroi se calcule par la formule analytique suivante :

$$U_c = \frac{1}{R_{se} + \sum_j \frac{e_j}{\lambda_j} + \sum_k R_{LAk} + R_{si}}$$
 W/(m².K),

avec:

- R_{se}: Résistance superficielle extérieure, en m².K/W,

- R_{si}: Résistance superficielle intérieure, en m².K/W,

- e_i: Epaisseur du matériau constituant la couche j du procédé en partie courante, en m,

- λ_i : Conductivité thermique du matériau de la couche j, en W/(m.K),

- R_{I Ak}: Résistance thermique équivalente de la couche d'air k, en m².K/W.

c. Le coefficient de ponts thermiques intégrés linéiques ψ_i se calcule par comparaison entre le flux total sortant du modèle 3 D intégrant le pont thermique, avec le flux traversant le même volume de partie courante :

$$\psi_i = \frac{\Phi_T - A.\Delta T.U_c}{L_i.\Delta T} \quad \text{W/(m.K),}$$

avec:

- U_c: Coefficient de transmission thermique en partie courante, en W/(m².K),

- Φ_T : Flux total traversant le modèle 3 D avec pont thermique, en W,

- ΔT: Différence de température entre les ambiances intérieure et extérieure, en K,

- L_i: Linéaire du pont thermique intégré i, en m,

- A: Surface totale de la paroi, en m².

d. Le coefficient de ponts thermiques intégrés ponctuels χ_j d'un appui ou d'une fixation, se calcule par comparaison entre le flux total sortant du modèle 3 D intégrant le pont thermique, avec le flux traversant le même volume sans l'appui ou la fixation :

$$\chi_i = \frac{\Phi_T - \Phi'}{\Delta T}$$
 W/K,

avec:

- Φ_T : Flux total traversant le modèle 3 D intégrant tous les ponts thermiques linéiques et le pont thermique ponctuel étudié, en W,
- Φ' : Flux total traversant le modèle 3 D intégrant tous les ponts thermiques linéiques mais sans ponts thermiques ponctuels, en W,
- ΔT : Différence de température entre les ambiances intérieure et extérieure, en K.
- e. Le coefficient de ponts thermiques intégrés ponctuels χ_j * correspondant au croisement de deux éléments linéiques horizontaux et verticaux, se calcule par la formule suivante :

$$\chi_i^* = \frac{\Phi_T^* - A.\Delta T.U_c}{\Delta T} - \sum_i \psi_i . L_i$$
W/K.

avec:

- $\Phi_{\scriptscriptstyle T}$ * : Flux total traversant le modèle 3 D intégrant tous les ponts thermiques, en W,

- U_c: Coefficient de transmission thermique en partie courante, en W/(m².K),
- A: Surface totale de la paroi, en m²,
- ΔT: Différence de température entre les ambiances intérieure et extérieure, en K,
- ψ_i : Coefficient linéique du pont thermique intégré i, en W/(m.K),
- L_i: Linéaire du pont thermique intégré i, en m.

III.4.2 Pont thermique de liaison au niveau d'un angle sortant ou rentrant

a. Le coefficient de transmission linéique Ψ_{moyen} au niveau d'un angle rentrant ou sortant avec une façade F4 se calcule à partir de la relation suivante :

$$\Psi_{moyen} = \Psi_0 + \frac{\chi_{renfort_d'angle}}{E_{renfort_d'angle}}$$
 W/(m.K),

Avec:

- ψ₀: Coefficient de transmission linéique de la liaison 2D uniquement, exprimé en W/(m.K),
- χ_{renfort d'angle}: Coefficient de transmission ponctuel des pièces de renfort d'angle, exprimé en W/K,
- E_{renfort d'angle}: Entraxe vertical des pièces de renfort, en m.

b. Le coefficient de transmission linéique Ψ_0 de la liaison 2D se calcule à partir de la relation suivante :

$$\Psi_0 = \frac{\Phi_{01} - \Phi_{02}}{\Lambda T \times L} \qquad \text{W/(m.K)},$$

avec:

- ϕ_{01} : Flux total traversant le modèle 2D et obtenu par calcul numérique, exprimé en W,
- ϕ_{02} : Flux traversant le modèle 2D utilisé pour le calcul de ϕ_{01} et obtenu par calcul numérique lorsque l'effet du pont thermique est annulé, exprimé en W,
- ΔT: Différence de température entre les deux ambiances chaude et froide, exprimée en K,
- L: Dimension caractéristique du modèle numérique, exprimée en m.

c. Le coefficient de déperdition ponctuel $\chi_{\text{renfort d'angle}}$ des pièces de renforts d'angle se calcule à partir de la relation suivante :

$$\chi_{renfort_d'angle} = \frac{\Phi_{03} - \Phi_{04}}{\Lambda T}$$
 W/K,

avec:

- ϕ_{03} : Flux total traversant le modèle 3D avec les pièces de renfort d'angle et obtenu par calcul numérique, exprimé en W,
- ϕ_{04} : Flux total traversant le modèle 3D sans les pièces de renfort d'angle et obtenu par calcul numérique, exprimé en W,
- ΔT: Différence de température entre les deux ambiances chaude et froide, exprimée en K.

III.4.3 Pont thermique de liaison entre la façade F4 et une paroi horizontale

Les formules suivantes sont valables pour les liaisons : Façade F4/Acrotère, Façade F4/Plancher intermédiaire et Façade F4/Plancher bas isolé sous chape.

a. Le coefficient de transmission linéique Ψ_{moyen} de la liaison entre la façade F4 et une paroi horizontale se calcule à partir de la relation suivante :

$$\Psi = \Psi_0 + n_{PB_fix} \times \chi_{PB_fix} + \frac{\chi_{crois-dalle/ossature}}{E_{ossature}} \quad \text{W/(m.K)}$$

avec:

- ψ_0 : Coefficient de transmission linéique de la liaison 2D uniquement, exprimé en W/(m.K),
- $\chi_{PB fix}$: Coefficient de transmission ponctuel des pattes de fixation « PATTE MAXI PB FIX », exprimé en W/K,
- n_{PB fix}: Densité de pattes de fixations « PATTE MAXI PB FIX », exprimée en m⁻¹,
- $\chi_{crois-dalle/ossature}$: Pont thermique ponctuel lié au croisement entre la dalle béton et l'ossature extérieure métallique en U, en W/K,
- E_{ossature}: Entraxe de l'ossature extérieure métallique, exprimé en m.

b. Le coefficient de transmission linéique Ψ_0 de la liaison 2D se calcule à partir de la relation suivante :

$$\Psi_0 = \frac{\Phi_{01} - \Phi_{02}}{\Lambda T \times L}$$
 W/(m.K),

avec:

- ϕ_{01} : Flux total traversant le modèle 2D et obtenu par calcul numérique, exprimé en W,
- ϕ_{02} : Flux traversant le modèle 2D utilisé pour le calcul de ϕ_{01} lorsque l'effet du pont thermique est annulé et obtenu par calcul numérique, exprimé en W,
- ΔT: Différence de température entre les deux ambiances chaude et froide, exprimée en K,
- L: Dimension caractéristique du modèle numérique, exprimée en m.

c. Le coefficient de déperdition ponctuel χ_{fix} liés aux pattes de fixations « PATTE MAXI PB FIX » se calcule à partir de la relation suivante :

$$\chi_{PB_-fix} = \frac{\Phi_{03} - \Phi_{04}}{N \times \Lambda T}$$
 W/K,

avec:

- ϕ_{03} : Flux total traversant le modèle 3D avec les éléments « PATTE MAXI PB FIX » et obtenu par calcul numérique, exprimé en W,
- ϕ_{04} : Flux total traversant le modèle 3D utilisé pour calculer ϕ_{03} sans « PATTE MAXI PB FIX » et obtenu par calcul numérique, exprimé en W,
- ΔT: Différence de température entre les deux ambiances chaude et froide, exprimée en K,
- N: Nombre de fixations « PATTE MAXI PB FIX » du modèle numérique utilisé pour calculer φ₀₃.

d. Le coefficient de transmission ponctuel $\chi_{crois-dalle/ossature}$ lié au croisement entre la dalle béton et l'ossature extérieure métallique en U se calcule à partir de la relation suivante :

$$\chi_{crois-dalle/ossature} = \frac{\Phi_{03} - A.\Delta T.U_p}{\Delta T} - \psi_0.L - N.\chi_{PB_fix}$$
 W/K,

avec:

 ϕ_{03} : Flux total traversant le modèle 3D avec les éléments « PATTE MAXI PB FIX » et obtenu par calcul numérique, exprimé en W,

- U_p: Coefficient de transmission thermique de la paroi, en W/(m².K),
- A: Surface totale de la paroi, en m²,
- ψ_0 : Coefficient de transmission linéique de la liaison 2D, exprimé en W/(m.K),
- $\chi_{PB_{-}fix}$: Coefficient de transmission ponctuel lié à l'élément de fixation « PATTE MAXI PB FIX », exprimé en W/K,
- N: Nombre de fixations du modèle 3D.
- ΔT: Différence de température entre les deux ambiances chaude et froide, exprimée en K.

III.4.4 Pont thermique de liaison entre la façade F4 et un balcon désolidarisé sur console

a. Le coefficient de transmission linéique Ψ_{moyen} de la liaison entre la paroi et un plancher intermédiaire se calcule à partir de la relation suivante :

$$\Psi_{moyen} = \Psi_0 + \frac{N_{PB_fix} \times \chi_{PB_fix}}{L_{balcon}} + \frac{N_{ossature} \times \chi_{crois-dalle/ossature}}{L_{balcon}} + \frac{N_{console} \times \chi_{console}}{L_{balcon}}$$
 W/(m.K),

avec:

- ψ_0 : Coefficient de transmission linéique, exprimé en W/(m.K),

- N_{PB-fix}: Densité de pattes de fixations « PATTE MAXI PB FIX », exprimée en m⁻¹,

- $\chi_{PB_{-fix}}$: Coefficient de transmission ponctuel lié à l'élément de fixation « PATTE MAXI PB FIX »,

- L_{balcon}: Longueur du balcon, en m,

- Nombre d'ossatures extérieures métalliques entre les appuis du balcon,

- $\chi_{crois-dalle/ossature}$: Pont thermique ponctuel lié au croisement entre la dalle béton et l'ossature extérieure métallique en U, en W/K,

- N_{console}: Nombre d'appuis du balcon,

- $\chi_{console}$: Coefficient de transmission ponctuel lié à une poutre d'appui du balcon, en W/K.

b. Le coefficient de transmission linéique Ψ_0 de la liaison sans ponts thermiques ponctuels se calcule à partir de la relation suivante :

$$\Psi_0 = \frac{\Phi_{01} - \Phi_{02}}{\Delta T \cdot L}$$
 W/(m.K),

avec:

- ϕ_{01} : Flux total traversant le modèle 2D et obtenu par calcul numérique, exprimé en W,
- ϕ_{02} : Flux traversant le modèle 2D utilisé pour le calcul de ϕ_{01} lorsque l'effet du pont thermique est annulé et obtenu par calcul numérique, exprimé en W,
- ΔT: Différence de température entre les deux ambiances chaude et froide, exprimée en K,
- L: Dimension caractéristique du modèle numérique, exprimée en m.

c. Le coefficient de transmission ponctuel χ_{fix} lié à l'élément de fixation « PATTE MAXI PB FIX » se calcule à partir de la relation suivante :

$$\chi_{PB_-fix} = \frac{\Phi_{03} - \Phi_{04}}{N \cdot \Lambda T}$$
 W/K,

avec:

- ϕ_{03} : Flux total traversant le modèle 3 D avec les éléments « PATTE MAXI PB FIX » comme seul élément ponctuel et obtenu par calcul numérique, exprimé en W,
- ϕ_{04} : Flux total traversant le modèle 3 D utilisé pour le calcul de ϕ_{03} sans les éléments « PATTE MAXI PB FIX » et obtenu par calcul numérique, exprimé en W,
- N: Nombre de fixations du modèle 3D,
- ΔT: Différence de température entre les deux ambiances chaude et froide, exprimée en K.
- c. Le coefficient de transmission ponctuel χ_{poutre} lié à une poutre d'appui du balcon se calcule à partir de la relation suivante :

$$\chi_{console} = \frac{\Phi_{04} - \Phi_{05}}{N.\Lambda T}$$
 W/K,

avec:

- ϕ_{04} : Flux total traversant le modèle 3 D avec une poutre d'appui en béton comme seul élément ponctuel et obtenu par calcul numérique, exprimé en W,

- ϕ_{05} : Flux total traversant le modèle 3 D utilisé pour calculer ϕ_{04} sans éléments ponctuels et obtenu par calcul numérique, exprimé en W,
- N: Nombre de fixations du modèle 3D,
- ΔT: Différence de température entre les deux ambiances chaude et froide, exprimée en K.
- e. Le coefficient de transmission ponctuel $\chi_{crois-dalle/ossature}$ lié au croisement entre la dalle de plancher intermédiaire et l'ossature extérieure métallique en U se calcule à partir de la relation suivante :

$$\chi_{crois-dalle/ossature} = \frac{\Phi_{03} - A.\Delta T.U_p}{\Delta T} - \psi_0.L - N.\chi_{PB_fix} \qquad \text{W/K},$$

avec:

- ϕ_{03} : Flux total traversant le modèle 3 D avec les éléments « PATTE MAXI PB FIX » et obtenu par calcul numérique, exprimé en W,
- U_p: Coefficient de transmission thermique de la paroi, en W/(m².K),
- A: Surface totale de la paroi, en m²,
- ψ_0 : Coefficient de transmission linéique, exprimé en W/(m.K),
- $\chi_{PB_{-}fix}$: Coefficient de transmission ponctuel lié à l'élément de fixation « PATTE MAXI PB FIX », exprimé en W/K,
- N: Nombre de fixations du modèle 3D,
- ΔT: Différence de température entre les deux ambiances chaude et froide, exprimée en K.

IV. RESULTATS

Les résultats ci-dessous ont été obtenus à partir des hypothèses décrites au paragraphe III.3.

IV.1 Configuration 1 : Coefficient U_p égal à 0,10 W/(m².K)

Pour la façade F4 étudiée, un coefficient de transmission thermique U_p égal à 0,10 W/(m².K) n'est possible qu'à partir d'une épaisseur d'isolant côté intérieur de 230 mm avec 120 mm d'isolant côté extérieur entre ossature métallique.

Les résultats détaillés sont précisés ci-dessous et sont valables avec ou sans la présence d'une gaine technique :

Epaisseur de l'isolant côté extérieur (mm)	120
Conductivité de l'isolant côté extérieur (W/m.K)	0,032
Epaisseur de l'isolant côté intérieur (mm)	230
Conductivité de l'isolant côté intérieur (W/m.K)	0,032
χ _{appui} (W/K)	0,0001
ψ _{ossature} (W/m.K)	0,0079
Ψ _{four-V} (W/m.K)	0,0000
Ψ _{four-H} (W/m.K)	0,0004
χ _{ossature/fourrure H} (W/K)	0,0016
U _c (W/m².K)	0,087
U _p ⁽¹⁾ (W/m².K)	0,10

^{(1):} Valable pour un entraxe d'ossature secondaire de 0,6 m, un entraxe de fourrure horizontale de 2,5 m et une densité à 0,667 appui Optima par m².

Tableau 3 : Ponts thermiques intégrés à la façade F4

IV.2 Configuration 2 : Angle rentrant

Pour cette configuration de liaison, il n'y a pas d'impact d'une gaine technique verticale sur le pont thermique de liaison moyen. Les valeurs à utiliser sont les suivantes :

Epaisseur de l'isolant côté extérieur (mm)	120							
Conductivité de l'isolant côté extérieur (W/(m.K))	0,035					0,0)32	
Epaisseur de l'isolant côté intérieur (mm)	80	100	120	140	80	100	120	140
χ _{renfort d'angle} (W/K)	0,0125	0,0101	0,0085	0,0073	0,0129	0,0105	0,0088	0,0075
Ψ_{o} (W/(m.K))	0,0757	0,0661	0,0592	0,0538	0,0760	0,0665	0,0595	0,0541
$\Psi_{moyen}^{}$	0,09	0,08	0,07	0,06	0,09	0,08	0,07	0,06

^{(1) :} Valable pour un entraxe de pièce de renfort de 1 m

Tableau 4 : Ponts thermiques de liaison au niveau d'un angle rentrant

IV.3 Configuration 3 : Angle sortant

Les valeurs de ponts thermiques de liaison à utiliser lorsqu'il n'y a pas de gaine technique verticale, pour la configuration étudiée, sont les suivantes :

Epaisseur de l'isolant côté extérieur (mm)	120							
Conductivité de l'isolant côté extérieur (W/(m.K))	0,035					0,0)32	
Epaisseur de l'isolant côté intérieur (mm)	80	100	120	140	80	100	120	140
χ _{renfort d'angle} (W/K)	0,0045	0,0032	0,0023	0,0016	0,0047	0,0033	0,0024	0,0017
Ψ_{0} (W/(m.K))	0,0339	0,0308	0,0295	0,0270	0,0338	0,0306	0,0294	0,0269
$\Psi_{\text{moyen}}^{(2)}$	0,04	0,03	0,03	0,03	0,04	0,03	0,03	0,03

^{(2) :} Valable pour un entraxe de pièce de renfort de 1 m

Tableau 5 : Ponts thermiques de liaison au niveau d'un angle sortant sans gaine technique verticale

Les valeurs de ponts thermiques de liaison à utiliser lorsqu'il y a une gaine technique verticale, pour la configuration étudiée, sont les suivantes :

Epaisseur de l'isolant côté extérieur (mm)	120							
Conductivité de l'isolant côté extérieur (W/(m.K))	0,035 0,032							
Epaisseur de l'isolant côté intérieur (mm)	80	100	120	140	80	100	120	140
χ _{renfort d'angle} (W/K)	0,0045	0,0032	0,0023	0,0016	0,0047	0,0033	0,0024	0,0017
Ψ ₀ (W/(m.K))	0,0441	0,0400	0,0384	0,0351	0,0435	0,0395	0,0379	0,0346
$\Psi_{\text{moyen}}^{(3)}$	0,05	0,04	0,04	0,04	0,05	0,04	0,04	0,04

^{(3) :} Valable pour un entraxe de pièce de renfort de 1 m

Tableau 6 : Ponts thermiques de liaison au niveau d'un angle sortant avec gaine technique verticale

IV.4 Configuration 4 : Liaison Façade F4 / Acrotère isolé

Pour cette configuration de liaison, il n'y a pas d'impact d'une gaine technique sur le pont thermique de liaison moyen (lorsque cette dernière fait l'objet d'un bourrage d'isolant). Les valeurs à utiliser sont les suivantes :

Epaisseur de la dalle béton (mm)		200						
Epaisseur d'isolant au-dessus la dalle (mm)	150							
Conductivité de l'isolant au-dessus la dalle (W/(m.K))	0,037							
Epaisseur de l'isolant côté extérieur (mm)	120							
Conductivité de l'isolant côté extérieur (W/(m.K))	0,035				0,032			
Epaisseur de l'isolant côté intérieur (mm)	80	100	120	140	80	100	120	140
χ_{PB_fix} (W/K)	0,0005	0,0005	0,0004	0,0004	0,0005	0,0005	0,0005	0,0004
χcrois dalle/ossature (W/K)	0,0274	0,0274 0,0269 0,0263 0,0256 0,028					0,0272	0,0265
Ψ ₀ (W/(m.K))	0,1140	0,1143	0,1147	0,1150	0,1111	0,1114	0,1118	0,1121
Ψ _{moyen} ⁽³⁾	0,16	0,16	0,16	0,16	0,16	0,16	0,16	0,16

^{(3):} Valable pour un entraxe d'ossature et de pattes de fixation de 0,6 m

Tableau 7 : Ponts thermiques de liaison au niveau de la façade et d'un plancher intermédiaire avec isolant PANOTOIT CONFORT 37 d'épaisseur 150 mm

Epaisseur de la dalle béton (mm)	200							
Epaisseur d'isolant au-dessus la dalle (mm)	220							
Conductivité de l'isolant au-dessus la dalle (W/(m.K))	0,036							
Epaisseur de l'isolant côté extérieur (mm)	120							
Conductivité de l'isolant côté extérieur (W/(m.K))	0,035				0,032			
Epaisseur de l'isolant côté intérieur (mm)	80	100	120	140	80	100	120	140
χ_{PB_fix} (W/K)	0,0004	0,0004	0,0004	0,0004	0,0004	0,0004	0,0004	0,0004
χ _{crois dalle/ossature} (W/K)	0,0308	0,0302	0,0295	0,0288	0,0319	0,0312	0,0306	0,0298
Ψ ₀ (W/(m.K))	0,1319	0,1323	0,1327	0,1331	0,1286	0,1290	0,1294	0,1298
$\Psi_{moyen}^{}}$	0,18	0,18	0,18	0,18	0,18	0,18	0,18	0,18

^{(4):} Valable pour un entraxe d'ossature et de pattes de fixation de 0,6 m

Tableau 8 : Ponts thermiques de liaison au niveau de la façade et d'un plancher intermédiaire avec isolant EPSITOIT 20 d'épaisseur 220 mm

IV.5 Configuration 5 : Liaison Façade F4 / Plancher bas isolé sous chape

Les valeurs de ponts thermiques de liaison à utiliser lorsqu'il n'y a pas de gaine technique verticale, pour la configuration étudiée, sont les suivantes :

Epaisseur de la dalle béton (mm)	220								
Epaisseur de l'isolant côté extérieur (mm)	120								
Conductivité de l'isolant côté extérieur (W/(m.K))	0,035 0,032								
Epaisseur de l'isolant côté intérieur (mm)	80	100	120	140	80	100	120	140	
χ_{PB_fix} (W/K)	0,0005	0,0002	0,0002	0,0002	0,0005	0,0002	0,0002	0,0002	
$\chi_{crois\ dalle/ossature}\ (W/K)$	0,0075	0,0034	0,0029	0,0024	0,0075	0,0033	0,0028	0,0024	
Ψ_{0} (W/(m.K))	0,2412	0,1802	0,1721	0,1716	0,2411	0,1801	0,1720	0,1715	
Ψ_{moyen} (5)	0,25	0,19	0,18	0,18	0,25	0,19	0,18	0,18	

^{(5):} Valable pour un entraxe d'ossature et de pattes de fixation de 0,6 m

Tableau 9 : Ponts thermiques de liaison Façade F4/Plancher bas isolé sous chape avec 93 mm d'isolant EPS SOL PLUS sans gaine technique verticale

Les valeurs de ponts thermiques de liaison à utiliser lorsqu'il y a une gaine technique verticale, pour la configuration étudiée, sont les suivantes :

Epaisseur de la dalle béton (mm)	220								
Epaisseur de l'isolant côté extérieur (mm)	120								
Conductivité de l'isolant côté extérieur (W/(m.K))	0,035				0,032				
Epaisseur de l'isolant côté intérieur (mm)	80	100	120	140	80	100	120	140	
χ_{PB_fix} (W/K)	0,0002	0,0001	0,0001	0,0001	0,0002	0,0001	0,0001	0,0001	
χcrois dalle/ossature (W/K)	0,0038	0,0005	0,0000	0,0000	0,0035	0,0004	0,0000	0,0000	
Ψ_{0} (W/(m.K))	0,1815	0,1322	0,1090	0,0999	0,1819	0,1325	0,1092	0,1001	
$\psi_{\text{moyen}}^{}^{}$	0,19	0,13	0,11	0,10	0,19	0,13	0,11	0,10	

^{(5):} Valable pour un entraxe d'ossature et de pattes de fixation de 0,6 m

Tableau 10 : Ponts thermiques de liaison Façade F4/Plancher bas isolé sous chape avec 93 mm d'isolant EPS SOL PLUS avec gaine technique verticale

Les valeurs de ponts thermiques de liaison dans le cas où il n'y a pas de gaine technique sont plus élevées que lorsqu'il y en a une. Les différences sont liées à la présence d'un bourrage d'isolant à la jonction entre la façade et le plancher bas qui n'a été considéré que dans le cas où il y a une gaine technique verticale.

IV.6 Configuration 6 : Liaison Façade F4 / Plancher intermédiaire

Pour cette configuration de liaison, il n'y a pas d'impact d'une gaine technique sur le pont thermique de liaison moyen (lorsque cette dernière fait l'objet d'un bourrage d'isolant). Les valeurs à utiliser sont les suivantes :

Epaisseur de la dalle béton (mm)	220								
Epaisseur de l'isolant côté extérieur (mm)	120								
Conductivité de l'isolant côté extérieur (W/(m.K))	0,035				0,032				
Epaisseur de l'isolant côté intérieur (mm)	80	100	120	140	80	100	120	140	
χ_{PB_fix} (W/K)	0,005	0,005	0,005	0,005	0,005	0,005	0,005	0,005	
χ _{crois dalle/ossature} (W/K)	0,123	0,123	0,122	0,120	0,124	0,124	0,123	0,121	
Ψ ₀ (W/(m.K))	0,079	0,080	0,082	0,083	0,073	0,074	0,075	0,076	
$\Psi_{\text{moyen}}^{(6)}$	0,29	0,29	0,29	0,29	0,29	0,29	0,29	0,29	

^{(6):} Valable pour un entraxe d'ossature et de pattes de fixation de 0,6 m

Tableau 11 : Ponts thermiques de liaison Façade F4/Plancher intermédiaire

IV.7 Configuration 7 : Liaison Façade F4 / Console balcon

Pour cette configuration de liaison, il n'y a pas d'impact d'une gaine technique sur le pont thermique de liaison moyen (lorsque cette dernière fait l'objet d'un bourrage d'isolant). Les valeurs à utiliser sont les suivantes :

Epaisseur de la dalle béton (mm)	220								
Epaisseur de l'isolant côté extérieur (mm)	120								
Conductivité de l'isolant côté extérieur (W/(m.K))	0,035				0,032				
Epaisseur de l'isolant côté intérieur (mm)	80	100	120	140	80	100	120	140	
χ _{console} (W/K)	0,199	0,195	0,192	0,188	0,202	0,198	0,194	0,190	
χ_{PB_fix} (W/K)	0,005	0,005	0,005	0,005	0,005	0,005	0,005	0,005	
χcrois dalle/ossature (W/K)	0,123	0,123	0,122	0,120	0,124	0,124	0,123	0,121	
Ψ ₀ (W/(m.K))	0,079	0,080	0,082	0,083	0,073	0,074	0,075	0,076	
$\Psi_{\text{moyen}}^{}$ (7)	0,37	0,37	0,37	0,36	0,37	0,37	0,36	0,36	

(7): Valable pour un entraxe d'ossature et de pattes de fixation de 0,6 m et une largeur de balcon de 4 m.

Tableau 12 : Ponts thermiques de liaison au niveau d'un balcon désolidarisé sur console

ANNEXES

Page 31/42

ANNEXE 1: COUPES DES LIAISONS ETUDIEES

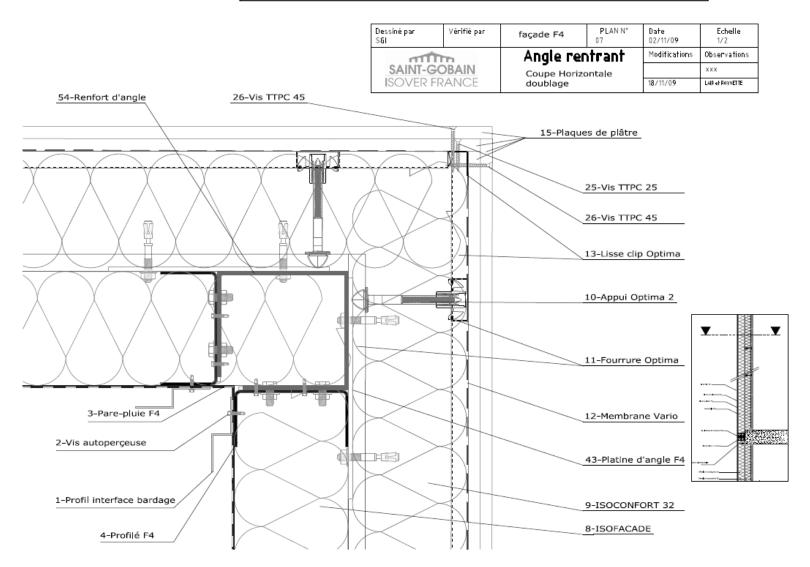


Figure 16 : Configuration 2 – Angle rentrant

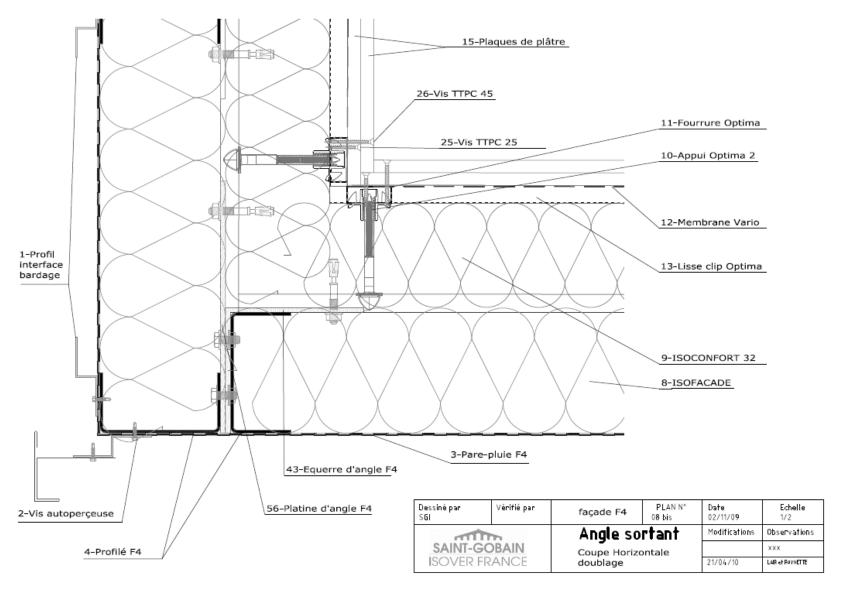


Figure 17: Configuration 3 – Angle sortant

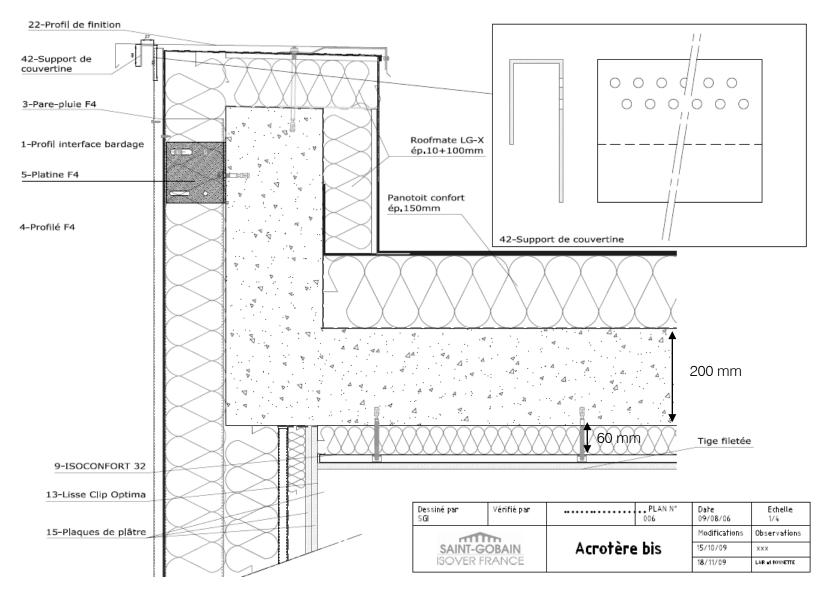


Figure 18 : Configuration 4 – Liaison Façade F4 / Acrotère

Page 34/42

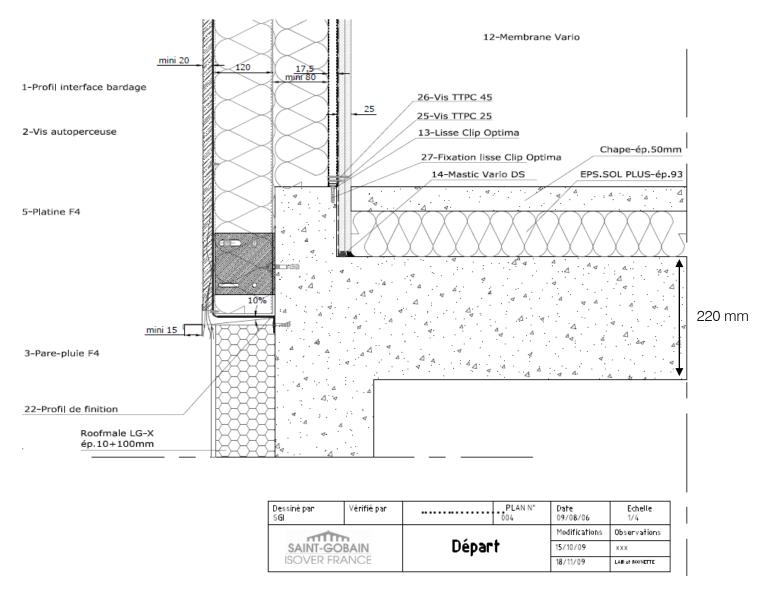


Figure 19 : Configuration 5 – Liaison Façade F4 / Plancher bas isolé sous chape

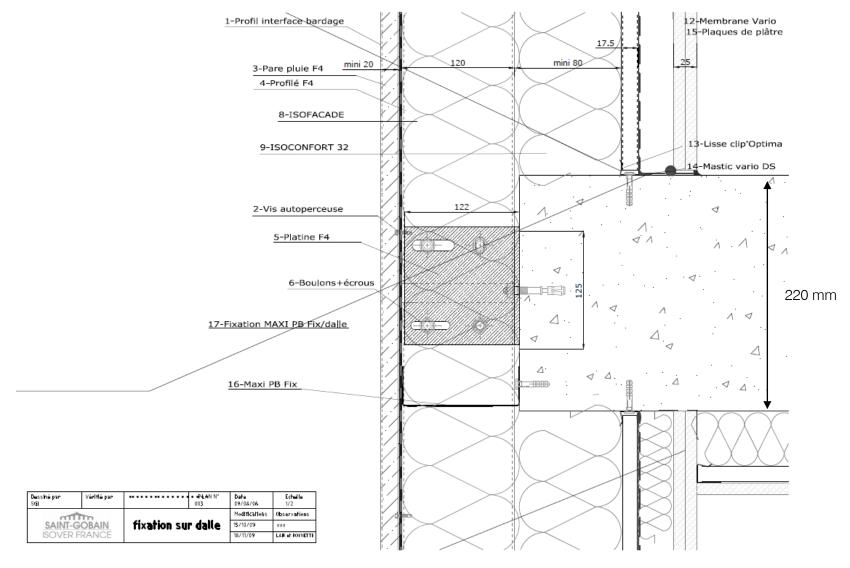


Figure 20 : Configuration 6 – Liaison Façade F4 / Plancher intermédiaire

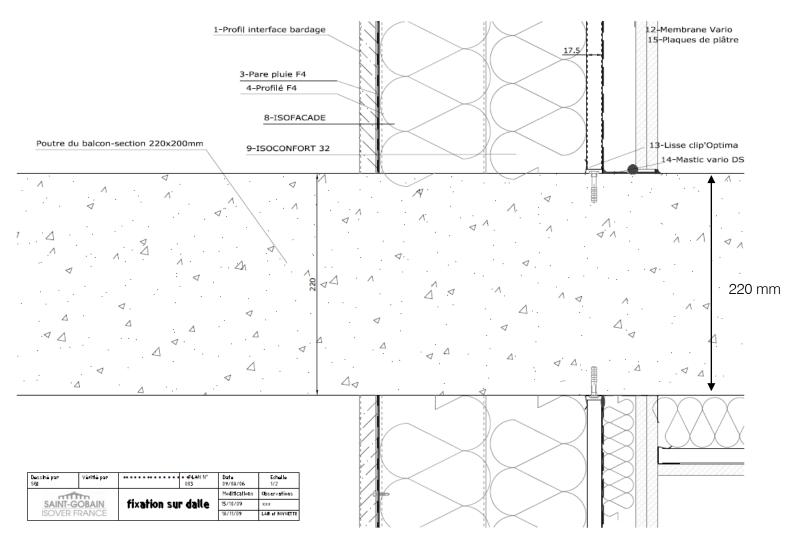


Figure 21: Configuration 7 – Liaison Façade F4 / Console balcon

Page 37/42

ANNEXE 2 : CARTOGRAPHIES DE TEMPERATURE DES LIAISONS ETUDIEES

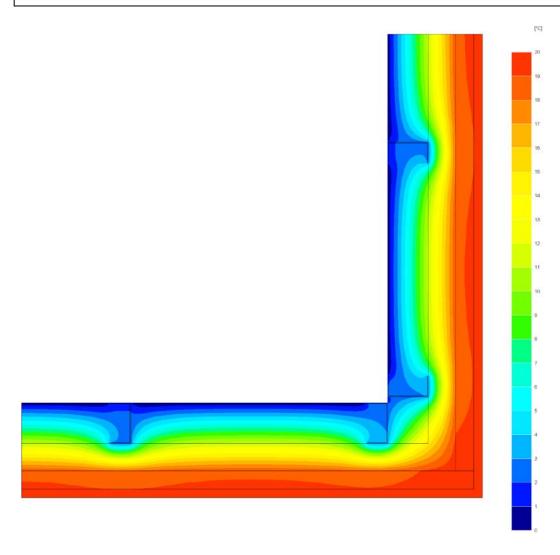


Figure 22 : Configuration 2 - Angle rentrant

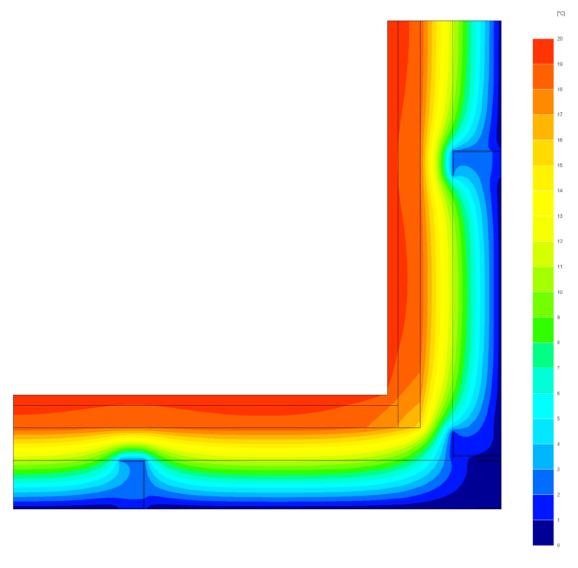


Figure 23 : Configuration 3 - Angle sortant

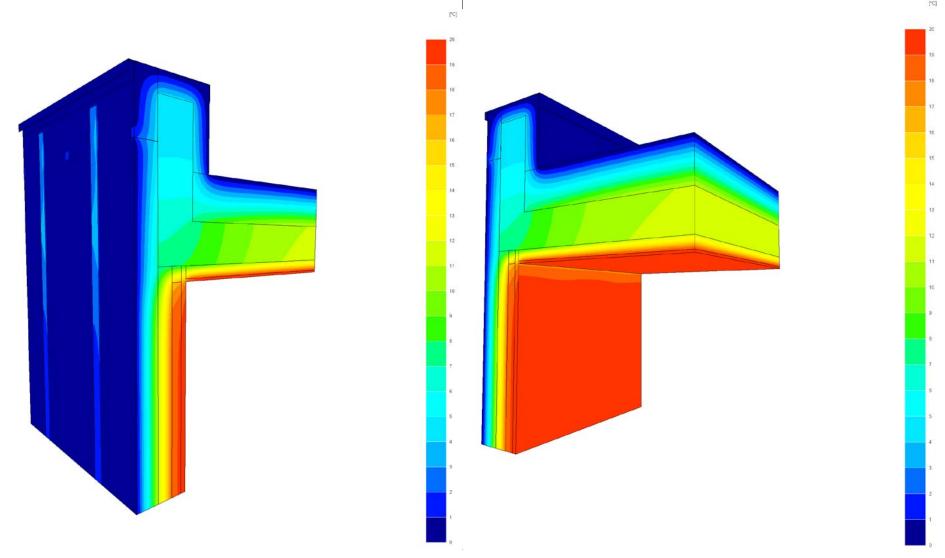


Figure 24 : Configuration 4 – Liaison Façade F4 / Acrotère isolé

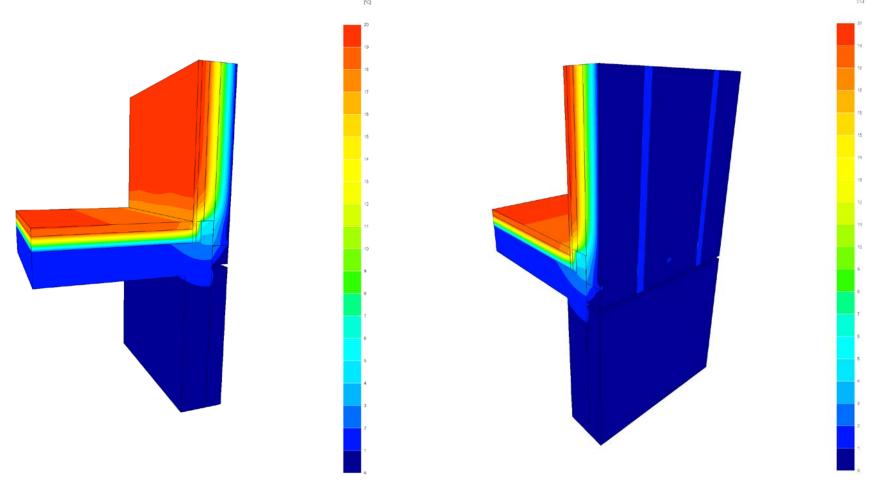


Figure 25 : Configuration 5 – Liaison Façade F4 / Plancher bas

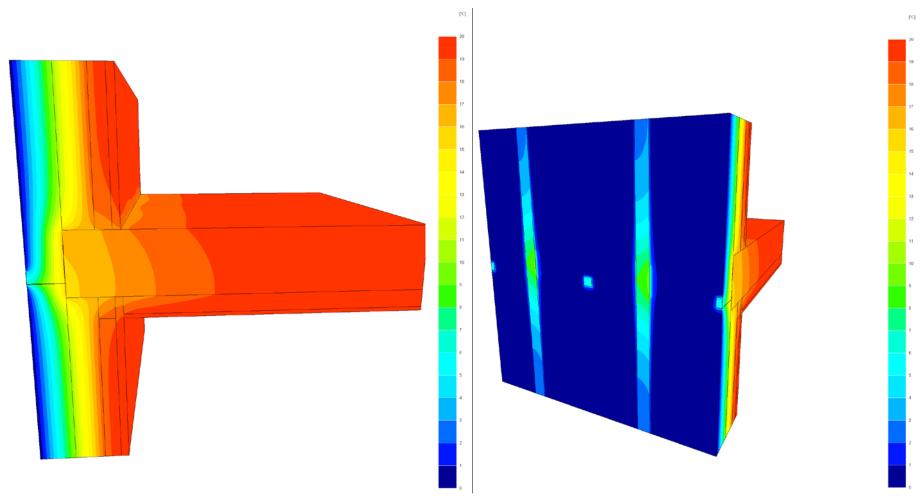


Figure 26 : Configuration 6 – Liaison Façade F4 / Plancher intermédiaire

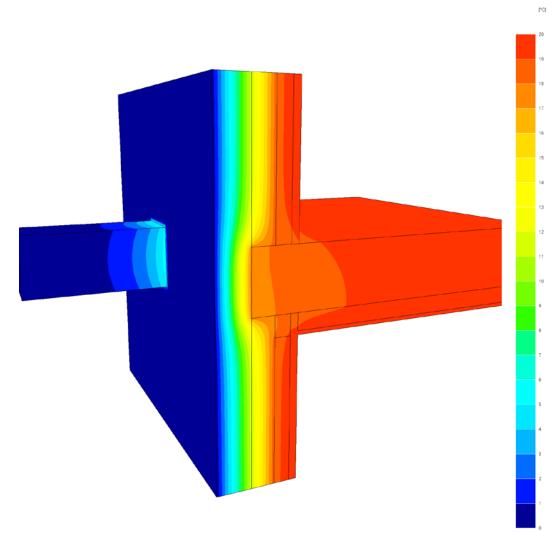


Figure 27 : Configuration 7 – Liaison Façade F4 / Console balcon