

DÉPARTEMENT ACOUSTIQUE ET ÉCLAIRAGE

Laboratoire d'essais acoustiques

RAPPORT D'ESSAIS N° AC08-26013523/2 **CONCERNANT DEUX BLOCS-PORTES**

L'accréditation de la section Laboratoires du COFRAC atteste de la compétence des laboratoires pour les seuls essais couverts par l'accréditation.

rapport d'essais atteste uniquement caractéristiques de l'objet soumis aux essais et ne préjuge pas des caractéristiques de produits similaires. Il ne constitue pas une certification de produits au sens de l'article L 115-27 du code de la consommation et de la loi du 3 juin 1994.

En cas d'émission du présent rapport par voie électronique et/ou sur support physique électronique, seul le rapport sous forme de support papier signé par le CSTB fait foi en cas de litige. Ce rapport sous forme de support papier est conservé au CSTB pendant une durée minimale de 10 ans.

La reproduction de ce rapport d'essais n'est autorisée que sous sa forme intégrale.

À LA DEMANDE DE :

N/Réf.: BR-70012983 26013523

EK/GA

CENTRE SCIENTIFIQUE ET TECHNIQUE DU BATIMENT

SIÈGE SOCIAL > 84 AVENUE JEAN JAURÈS | CHAMPS-SUR-MARNE | 77447 MARNE-LA-VALLÉE CEDEX 2 TÉL. (33) 01 64 68 84 87 | FAX. (33) 01 64 68 83 14 | www.cstb.fr

OBJET

Déterminer l'indice d'affaiblissement acoustique R de deux blocs-portes fabriqués par la société SPENLE.

TEXTES DE RÉFÉRENCE

Les mesures sont réalisées selon les normes NF EN ISO 140-1 (1997), NF EN 20140-2 (1993) et NF EN ISO 140-3 (1995) complétées par la norme NF EN ISO 717/1 (1997) et amendements associés.

OBJET SOUMIS À L'ESSAI

Date de réception au laboratoire : 17 novembre 2008

Origine : SPENLE Mise en œuvre : CSTB

LISTE RÉCAPITULATIVE DES ESSAIS

Nº essais Objets testés

- 1 Bloc-porte SPENLE ®, SP 250 standard à un vantail
- 2 Bloc-porte SPENLE ®, SP 250 Acoustique « STILLROOM » (version stratifié) à un

Fait à Marne-la-Vallée, le 17 mars 2009

Le chargé d'essais

Le responsable du pôle

Elias KADRI

Jean-Baptiste CHÉNÉ

INDICE D'AFFAIBLISSEMENT ACOUSTIQUE R D'UN BLOC-PORTE

Poste

Essai Date

20/11/08 MÉGA

DEMANDEUR, FABRICANT

SPENLE [9]

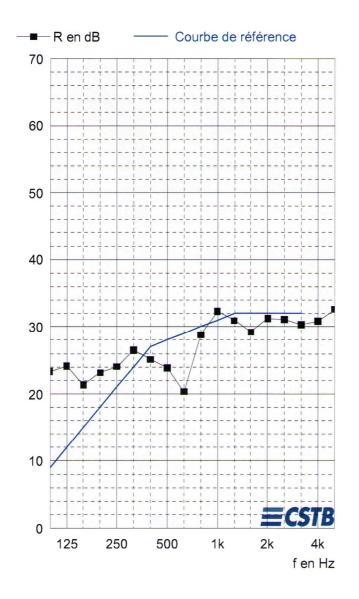
APPELLATION

Porte Pivotante SP 250

CONFIGURATION

Standard

CARACTÉRISTIQUES PRINCIPALES


Dimensions du vantail (H x I) en mm : 2048 x 928

Épaisseur du vantail en mm : 35 Masse du vantail en kg : 39,4

CONDITIONS DE MESURES

Salle émission :Température : 25 °C
Humidité relative : 43 % **Salle réception :**Température : 24 °C
Humidité relative : 46 %

RÉSULTATS

f	R
100	23,3
125	24,1
160	21,3
200	23,1
250	24,0
315	26,5
400	25,1
500	23,8
630	20,3
800	28,8
1000	32,3
1250	30,9
1600	29,2
2000	31,2
2500	31,1
3150	30,3
4000	30,8
5000	32,6
Hz	dB
(*): valeur comigée.	(+): limite de poste

(*): valeur comgée. (+): limite de poste

 $R_w(C;C_{tr}) = 28(-1;-2) dB$

Pour information : $R_x = R_w + C = 27 \text{ dB}$ $R_{xy} = R_w + C_y = 26 \text{ dB}$

INDICE D'AFFAIBLISSEMENT ACOUSTIQUE R D'UN BLOC-PORTE

AD32

Essai 2 Date 2

Poste

20/11/08 MÉGA

DEMANDEUR, FABRICANT

SPENLE 9

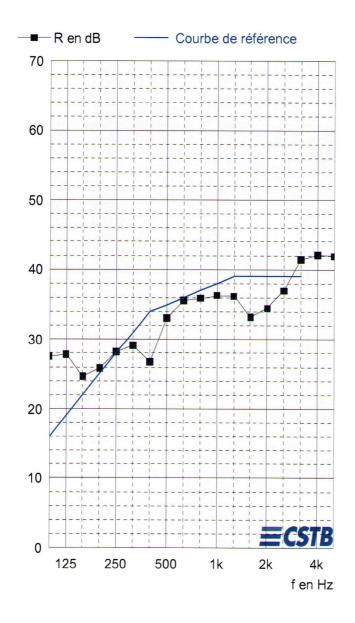
APPELLATION

Porte Pivotante SP 250

CONFIGURATION

Acoustique - « STILLROOM » (version stratifié)

CARACTÉRISTIQUES PRINCIPALES


Dimensions du vantail (H x I) en mm : 2048 x 928 Épaisseur du vantail en mm : 42

Masse du vantail en kg : 60,4

CONDITIONS DE MESURES

Salle émission : Salle réception : Température : 25 °C Température : 25 °C Humidité relative : 44 % Humidité relative : 48 %

RÉSULTATS

f	R
100	27,5
125	27,8
160	24,6
200	25,8
250	28,2
315	29,1
400	26,7
500	33,1
630	35,6
800	35,9
1000	36,3
1250	36,2
1600	33,2
2000	34,5
2500	37,0
3150	41,4
4000	42,1
5000	41,9
Hz	dB

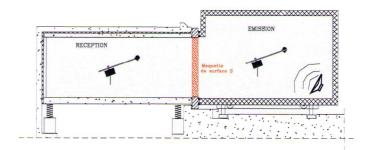
(*): valeur comgée. (+): limite de poste.

 $R_w(C;C_{tr}) = 35(-1;-3) dB$

Pour information : $R_x = R_w + C = 34 \text{ dB}$ $R_{xx} = R_w + C_x = 32 \text{ dB}$

ANNEXE 1 MÉTHODE D'ÉVALUATION ET EXPRESSION DES RÉSULTATS

INDICE D'AFFAIBLISSEMENT ACOUSTIQUE AU BRUIT AÉRIEN R


Méthode d'évaluation : NF EN ISO 140-3 (1995)

La norme NF EN ISO 140-3 (1995) est la méthode d'évaluation de l'isolement acoustique aux bruits aériens des éléments de construction tels que murs, plancher, portes, fenêtres, éléments de façades, façades, ...

Le mesurage doit être réalisé dans un laboratoire d'essai sans transmissions latérales. Le poste d'essai utilisé est composé de deux salles : une salle fixe contre laquelle nous fixons le cadre support de l'échantillon à tester et une salle mobile réalisant ainsi un couple « salle d'émission – salle de réception ». Ces salles et le cadre sont totalement désolidarisés entre eux (joints néoprènes) et sont conformes à la norme NF EN ISO 140-1 (1997). La conception des salles (boîte dans la boîte) procure une forte isolation acoustique vis-à-vis de l'extérieur et permet de mesurer des niveaux de bruit de fond très faibles.

Mesure par tiers d'octave, de 100 à 5000 Hz :

- du niveau de bruit de fond dans le local de réception L_{BdF}
- de l'isolement brut : L_E L_R
- de la durée de réverbération du local de réception T

Calcul de l'indice d'affaiblissement acoustique R en dB pour chaque tiers d'octave :

$R = L_E - L_R + 10 \log (S/A)$

LE : Niveau sonore dans le local d'émission en dB

L_R: Niveau sonore dans le local de réception, corrigé du bruit de fond en dB

S : surface de la maquette à tester en m²

A : Aire équivalente d'absorption dans le local de réception en m²

 $A = (0.16 \times V)/T$ où V est le volume du local de réception en m³

et T est la durée de réverbération du même local en s.

Plus R est grand, plus l'élément testé est performant.

Expression des résultats : Calcul de l'indice unique pondéré R_w(C;C_{tr}) selon la norme NF EN ISO 717-1 (1997)

Prise en compte des valeurs de R par tiers d'octave entre 100 et 3150 Hz avec une précision au 1/10ème de dB.

Déplacement vertical d'une courbe de référence par saut de 1 dB jusqu'à ce que la somme des écarts défavorables soit la plus grande tout en restant inférieure ou égale à 32,0 dB.

R_w en dB est la valeur donnée alors par la courbe de référence à 500 Hz.

Les termes d'adaptation à un spectre (C et C_{tr}) sont calculés à l'aide de spectres de référence pour obtenir :

- L'isolement vis-à-vis de bruits de voisinage, d'activités industrielles ou aéroportuaire : $R_A = R_w + C$ en dB
- L'isolement vis-à-vis du bruit d'infrastructure de transport terrestre: R_{A/tr} = R_W + C_{tr} en dB

ANNEXE 2 - APPAREILLAGE

POSTE MÉGA

Salle d'émission : MÉGA 3

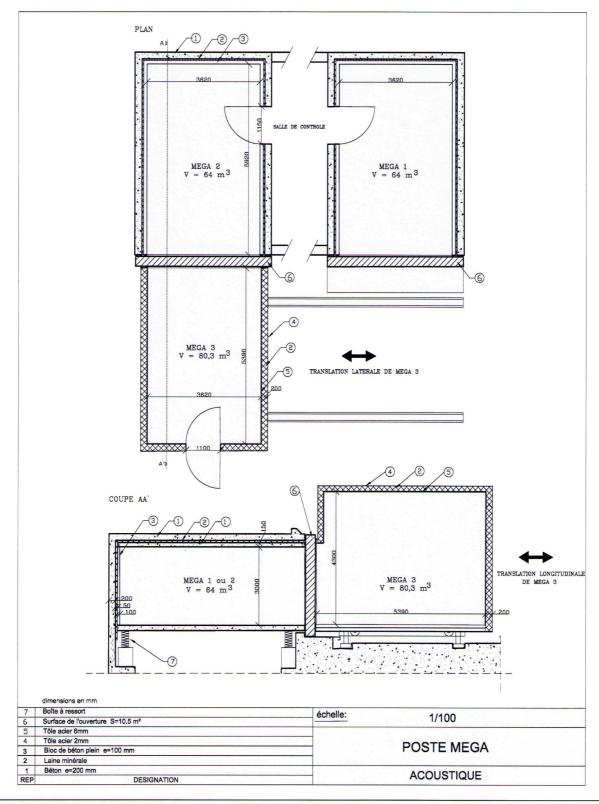
DÉSIGNATION	MARQUE	TYPE	N° CSTB
Chaîne microphonique	Bruël & Kjær	Microphone 4190	CSTB 01 0218
	Bruël & Kjær	Préamplificateur 2669	
Bras tournant	Bruël & Kjær	3923	CSTB 81 0004
Amplificateur	LAB GRUPPEN	LAB1000	CSTB 97 0198
Source	CSTB-PHL AUDIO	Cube	CSTB 97 0190
Source	CSTB-PHL AUDIO	Cube	CSTB 97 0192

Salle de réception : MÉGA 2

DÉSIGNATION	MARQUE	TYPE	N° CSTB	
Chaîne microphonique	Bruël & Kjær	Microphone 4190	CSTB 01 0217	
Chame inicrophonique	Bruël & Kjær	Préamplificateur 2669	CS1B 01 0217	
Bras tournant	Bruël & Kjær	3923	CSTB 81 0002	
Amplificateur	LAB GRUPPEN	LAB1000	CSTB 97 0196	
Source	CSTB-ELECTRO VOICE	Pyramide	CSTB 97 0202	

Salle de commande

DÉSIGNATION	MARQUE	TYPE	N° CSTB
Analyseur temps réel	Bruël & Kjær	2144	CSTB 97 0163
Micro-ordinateur	DELL	OPTIPLEX GX 270	
Calibreur	Bruël & Kjær	4231	CSTB 04 1839



ANNEXE 3 - PLAN DU POSTE D'ESSAIS

POSTE MÉGA

FIN DE RAPPORT

