

DIVISION LABORATOIRES ENVIRONNEMENT ESSAIS MESURES Rapport de mesure n° 20423553/GD.SR Affaire suivie par M. DUSSAUGE

2: 04 78 19 81 78

SOCIETE KNAUF Zone d'Activité Rue Principale 68600 WOLFGANTZEN

MESURES D'ISOLEMENT ACOUSTIQUE DE CLOISONS DE L'INSTITUT DE CANCEROLOGIE DE LA LOIRE A SAINT ETIENNE

Date d'intervention : 18 Février 2004

Date du rapport : 9 mars 2004

Destinataire : 2 ex. à l'attention de M. VASSEUR à l'adresse ci-dessus

> Le Responsable d'Affaire Environnement Essais Mesures

> > G. DUSSAUGE

SOMMAIRE

1.	AVANT PROPOS	3
2.	OBJECTIF	3
3.	REFERENTIEL	3
4.	MATERIEL DE MESURE	3
5.	MESURES REALISEES	4
6.	PRESENTATION DES RESULTATS	4
7.	RESULTATS	5
8.	COMMENTAIRES	5

Ce rapport comprend 11 pages

104-0

1. AVANT PROPOS

Suite à la demande formulée par Monsieur VASSEUR de la Société KNAUF, le CETE APAVE SUDEUROPE a procédé à des mesures d'isolement acoustique sur des cloisons séparatives.

Ces mesures ont été réalisées par Monsieur DUSSAUGE, le 18 Février 2004 dans des locaux d'hébergement de l'Institut de Cancérologie de la Loire à Saint Etienne (42).

2. OBJECTIF

Les mesures entreprises ont pour but :

- de vérifier les isolements acoustiques des cloisons séparatives entre chambres.
- de s'assurer que les valeurs d'isolement acoustiques de ces cloisons sont compatibles avec les exigences de la réglementation en vigueur.

3. REFERENTIEL

Les exigences sont fixées par :

l'Arrêté du 25 Avril 2003 relatif à la limitation du bruit dans les Etablissements de Santé,

Les mesures ont été réalisées conformément :

à la Norme ISO 717-1 d'août 1997 « Evaluation de l'Isolement acoustique des immeubles et des éléments de construction » - Partie 1 : Isolement aux bruits aériens.

4. MATERIEL DE MESURE

- Sonomètre intégrateur 01 dB type SIP 95 n° 10763 Classe 1 (temps réel)
- Logiciel de traitement Leq courts 01 dB dB Trait
- Logiciel de traitement 01 dB dB Bâti 32
- Générateur de bruit « rose » Brüel et Kjaer type 4224 n° 1340738

Ces appareils sont conformes aux normes en vigueur.

5. MESURES REALISEES

Mesures d'isolement acoustique aux bruits aériens entre chambres du dernier étage du bâtiment.

Cloisons séparatives entre chambre : KNAUF type 98 / 62.

Emission: Générateur de bruit « rose »

Mesures du niveau de pression acoustique par bandes de fréquences d'un octave

normalisées.

Réception: Mesures du niveau de pression acoustique par bandes de fréquences d'un octave

normalisées.

T.R. (durée de réverbération) :

Emission : Pistolet d'alarme dans le local de réception.

Mesures de la durée de réverbération bandes de fréquences d'un octave

normalisées.

6. PRESENTATION DES RESULTATS

Ceux-ci sont regroupés dans le tableau du § 7 avec, pour chaque essai, l'isolement acoustique standardisé représenté par une valeur unique Dn,T en dB.

D étant l'isolement brut (L1 - L2)

L1 : niveau d'émission L2 : niveau de réception

T = durée de réverbération mesurée dans le local de réception en seconde.

To = durée de réverbération de référence = 0,5 s

Correction pour bruit de fond :

Le bruit de fond étant inférieur de plus de 10 dB au niveau de réception, aucune correction n'est à apporter aux résultats.

Le détail des relevés figure sur les fiches de calculs en annexe du rapport.

7. RESULTATS

Mesure n°	Local d'émission	Local de réception	Dn,T (dB)
1	CH 43	CH 45	44
2	CH 43	CH 41	42
3	CH 29	CH 27	43
4	CH 29	CH 31	44
4 *	CH 29	CH 31	45

^{4*:} après obturation de la bouche VMC de CH 31.

8. COMMENTAIRES

L'exigence de l'Arrêté du 25 Avril 2003 étant un isolement minimum Dn,T de <u>42 dB</u> entre locaux d'hébergement, les isolements acoustiques sont ici jugés conformes.

ANNEXE

ESSAI Nº 1

Local d'émission: CH 43

Local de réception: CH45

Transmission: Horizontale

Dnt,A = 44 dB

C:\Campagnes	de mesures 01dB-Ste	ell\GEORGES\KNAU	FCACULISOL CMG
ID	0	2	3
Famille	Autospectre	Autospectre	TR
Туре	Emission	Réception	Salle
Résolution X	1/1	1/1	1/1
Date	23/02/04 10:32:03	23/02/04 10:34:51	23/02/04 10:35:52
Lieu :	CH43.	CH45	CH45
Commentaires			
Voie			
Hz	dB	dB.	S
125	77,4	59,0	2,00
250	86,8	52,0	2,90
500	91,6	54,8	3,30
1 k	90,2	53,0	2,10
2 k	87,4	49,0	2,50
4 k	81,1	37,4	1,60
Global A*	94,3		

C:\Campagnes de	e mesures 01dB-Stell\GEORGES\KNAUFCACULISOL.CMG
ID .	4
Famille	Isolement
Туре	Dn,T / Dn,T,w
Résolution X	1/1
Date	23/02/04 10:32:03
Lieu	CH43/ / CH45
Commentaires	
Voie	
Hz	dB
125	24,4
250	42,4
500	45,0
1 k	43,4
2 k	45,4
4 k	48,8
7 /	40,0

ESSAI Nº 2

Local d'émission : CH 43

Local de réception : CH41

Transmission: Horizontale

 $\underline{Dnt,A} = 42 dB$

C:\Campagnes de mesures 01dB-Stell\GEORGES\KNAUFCACULISOL.CMG				
ID	6	7	8	
Famille	Autospectre	Autospectre	TR	
Туре	Emission	Réception	Salle	
Résolution X	1/1	1/1	1/1	
Date	23/02/04 15:05:13	23/02/04 15:06:59	23/02/04 15:07:59	
Lieu ,	CH43	CH41	CH41	
Commentaires	÷		STATE OF THE STATE	
Voie				
Hz	dB	dB.	S	
125	80,1	60,5	1,90	
250	83,4	54,8	2,40	
500	88,7	53,3	2,10	
1 k	87,7	51,8	1,50	
2 k	86,2	48,3	1,40	
4 k	79,1	35,3	1,20	
Global A*	92,1	56,2		

C:\Campagnes de	mesures 01dB-Stell\GEORGES\KNAUFCACULISOL.CMG
ID	10
Famille	Isolement
Туре	Dn,T / Dn,T,w
Résolution X	1/1
Date	23/02/04 15:05:13
Lieu	CH43 / CH41
Commentaires	
Voie	
Hz	∴dB (
125	25,4
250	35,4
500	41,6
1 k	40,7
2 k	42,4
4 k	47,6
Valeur normative	Dn,T,w(C;Ctr)(dB) = 42(-2;-5)

ESSAI Nº 3

Local d'émission: CH 29

Local de réception: CH27

Transmission: Horizontale

 $\underline{Dnt,A} = 43 dB$

C:\Campagnes de mesures 01dB-Stell\GEORGES\KNAUFCACULISOL.CMG				
ID	11	12	13	
Famille	Autospectre	Autospectre	TR	
Туре	Emission	Réception	Salle	
Résolution X	1/1	1/1	1/1	
Date	23/02/04 15:13:10	23/02/04 15:15:01	23/02/04 15:16:13	
Lieu .	CH29	CH27	CH27	
Commentaires			7000 ONOWER	
Voie				
Hz	dB	dB.	S	
125	77,9	56,0	1,80	
250	83,4	51,1	2,20	
500	89,2	54,8	2,40	
1 k	86,4	48,5	1,80	
2 k	83,7	45,5	1,50 ´	
4 k	77,4	32,0	1,30	
Global A*	90,9	54,6		

C:\Campagnes de	mesures 01dB-Stell\GEORGES\KNAUFCACULISOL.CMG		
ID	14		
Famille	Isolement		
Туре	Dn,T / Dn,T,w		
Résolution X	1/1 .		
Date	23/02/04 15:13:10		
Lieu	CH29 / CH27		
Commentaires			
Voie			
Hz	dB		
125	27,5		
250	38,7		
500	41,2		
1 k	43,5		
2 k	43,0		
4 k	49,5		
Valeur normative	Dn,T,w (C; Ctr) (dB) = 43 (-1; -4)		

ESSAI Nº 4

Local d'émission: CH 29

Local de réception: CH31

Transmission: Horizontale

Dnt,A = 44 dB

C:\Campagnes de mesures 01dB-Stell\GEORGES\KNAUFCACULISOL.CMG			
ID	15	16	17
Famille	Autospectre	Autospectre	TR
Туре	Emission	Réception	Salle
Résolution X	1/1	1/1	1/1
Date	23/02/04 15:27:07	23/02/04 15:28:35	23/02/04 15:29:48
Lieu :	CH39	CH31	CH31
Commentaires			
Voie			
Hz	dB	dB,	S
125	81,9	61,9	2,20
250	83,3	52,0	2,60
500	87,8	55,3	3,30
1 k	86,7	46,6	2,30
2 k	84,3	46,1	1,60
4 k	77,5	31,4	1,30
Global A*	90,8	55,1	

C:\Campagnes de	mesures 01dB-Stell\GEORGES\KNAUFCACULISOL.CMG
ID	18
Famille	Isolement
Туре	Dn,T / Dn,T,w
Résolution X	1/1
Date	23/02/04 15:27:07
Lieu	CH39 / CH31
Commentaires	
Voie	
Hz	dB
125	26,4
250	38,5
500	40,7
1 k	46,7
2 k	43,3
4 k	50,2
Valeur normative	Dn,T,w (C; Ctr) (dB) = 44 (-2; -6)

ESSAI Nº 4'

Local d'émission: CH 29

Local de réception : CH31(bouche VMC obturée)

Transmission: Horizontale

 $\underline{Dnt,A} = 45 dB$

C:\Campagnes de mesures 01dB-Stell\GEORGES\KNAUFCACULISOL.CMG			
ID	19	20	17
Famille	Autospectre	Autospectre	TR
Туре	Emission	Réception	Salle
Résolution X	1/1	1/1	1/1
Date	23/02/04 15:33:01	23/02/04 15:34:28	23/02/04 15:29:48
Lieu .	CH29(2)	CH31(2)	CH31
Commentaires	10A 10%		
Voie			
Hz	r dB	dB,	S. T.
125	82,0	61,8	2,20
250	83,6	51,3	2,60
500	88,4	52,8	3,30
1 k	87,4	45,8	2,30
2 k	85,3	46,9	1,60
4 k	78,3	32,3	1,30
Global A*	91,6	54,0	

C:\Campagnes de mesures 01dB-Stell\GEORGES\KNAUFCACULISOL.CMG		
ID	21	
Famille	Isolement	
Туре	Dn,T / Dn,T,w	
Résolution X	1/1	
Date	23/02/04 15:33:01	
Lieu	CH29(2) / CH31(2)	
Commentaires		
Voie		
Hz	dB till plat	
125	26,6	
250	39,5	
500	43,8	
1 k	48,2	
2 k	43,5	
4 k	50,1	
Valeur normative	Dn,T,w (C; Ctr) (dB) = 45 (-2; -6)	