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Tfasample of absorptive material having anarea S ; Is placed on the floor and the test repeated,

the new reverberation time is

0.161V

T, (2) =
m().%a-&%+g%

where « is the absorption coefficient of the covered portien of the floor and « |- 18 the

absorption coefficient of the sample material under test. Combining Egs. 8.75 and 8.76 we
cbtain the desired coefficient

0.161V 1 1
@, =a, + - (8.77)
1 ° 5 Tep(2) Tgp (D

In these tests there is some dependence on the position of the sample in the room, Materials
placed in the center of a surface are more effective absorbers, and yield higher absorption
coetficients, than materials located in the corners. This is because the average particle velocity
15 higher there. There are also diffraction effects and edge absorption attributable to the sides
of the sample. For these reasons Sabine absorption coefficients that are greater than one
sometimes are obtained and must be used with caution in the Norris Eyring equation,

8.5 REVERBERANT FIELD EFFECTS
Energy Density and Intensity

We have scen that, as the modal spacing gets closer and closer together, it becomes less
useful to consider individual modes and we must seek other ways of describing the behavior
of sound in a roora. One concept is the energy density . A plane wave moves a distance ¢

in one second and carries an energy per unit area equal to its intensity, I. The direct-field
encrgy density D, per unit volume is

2

D=4t (8.78)
CO "OU Cﬂ

where p? is the rms acoustic pressure,

The energy density in a diffuse ficld has the same relationship to the pressure squared,
which is not a vector quantity, but a different relationship to the intensity. In a diffuse field
the sound energy can be coming from any dircction: The intensity is defined as the power
passing through an area in a given direction. In a diffuse field, half the energy is passing
through the area plane in the opposite direction to the one of interest. When we integrate the
energy incident on the area in the remaining half sphere, the cosine term reduces the intensity
by another factor of two. Thus in a reverberant field the intensity is only a quarter of the total
power passing through the area. This is shown in Fig. 8.12.

L=5{-~ (8.79)

(8.76)
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FIGURE 8.12  Intensity in a Reverberant Field
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Semireverberant Fields

Occasionally we encounter a semireverberant field, where energy falls onto one side ofa plane
with equal probability from any dircction. Most often this occurs when sound is propagating
from a reverberant field through an opening in a surface of the room. Under these conditions
the power passing through the planc of an opening having area S, is given by '

Se { PP\
w, =w|P (8.80)
) 2 \pycy

Room Effect

When a sound source that emits a sound power Wy 1is placed in a room, the energy density
will rise until the energy flow is balanced between the energy being created by the source
and the encrgy removed from the room due to absorption. Aficr a long time the total energy
in a room having a volume V due to a source having a sound power W is

W A W
VD, =3 [1+(l-@D+(-@+...] = -2 (8.81)

CO CO ¥

which has been simplified using the limit of a power series for @ < 1

dW,V
VD, = —2— - (8.82)
Cy'Sr
and the sound pressure in the room will be
2 4W 4W
P "0 _ T (8.83)

ppco  S;@ R
Equation 8.83 is the reverberant-field contribution to the sound pressure measured in a room

and can be combined with the direct-field contribution to obtain

P2 :QWS 4ws
PeSy 4mr? T R

(8.84)
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Taking the logarithm of each side we can express this equation as a level

_ Q 4
L, =Ly + 10log LR 5+ ﬂ +K (8.85)

where K is 0.1 for metric units and 10.5 for FP units. The numerical constants follow from
the reasoning given in Eq. 2.67.

Equation 8.85 is based on Sabinc’s theory and was published in 1948 by Hopkins and
Stryker. It is a useful workhorse for the calculation of the sound level in a room given the
sound power level of one or more sources. It holds reasonably well where the diffuse field
condition exists; that is, in relatively large rooms with adequate diffusion if we are not too

e ‘ . .
close (usualiy within 5) to reflecting surfaces. The increase in sound pressure level due to

the reverberant field over that which we would expect from free field falloff is called the
room effect.

Figure 8.13 gives the result from Eq. 8.85 for various values of the room constant. Near
the source the dircet-field contribution is larger than the reverberant-field contribution and
the falloff behavior is that of a point source in a free field. In the far field the direct-field
contribution has dropped below the reverberant-field energy, and the sound pressure level
is constant throughout the space. The level in the reverberant field can be reduced only by
adding more absorption to the room. According to this theory, only the total amount of
absorption is important, not where it is placed in the room. In practice absorption placed
where the particle velocity is the highest has the greatest effect. Thus absorption mounted
in a corner, where the pressurc has a maximum and the velocity a minimum, would be
less effective than absorption placed in the middle of a wall or other surface. Absorplion,
which is hung in the center of a space, has the greatest effect but this is not a practical
location,

FIGURE 8.13  Difference between Sound Power and Pressure Level in a Diffuse Room
Due to an Omnidirectional Source
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At a given distance, known as the critical distance, the direct-field level equals the
reverberant-field level. We can solve for the distance by setting the direct and reverberant

coniributions equal.

_ JQR
= e (8.86)

Beyond the critical distance the reverberant ficld predominates.

Radiation firom Lavge Sources

When the source of sound is physically large, such as the wall of a room, it can radiate
energy over its entire surface area. The idea of a displaced center was introduced in Eq. 2.91
to relate the sound power to the sound pressure level in frec space for a receiver located
close to a large radiating surface. Similarly in a reverberant space the direct and reverberant

contributions are combined

Q 4
L,=Ly + 10 log . 5 -+ R +K (8.87)
4r |:z+1;—9—:|
4

where K is 0.5 for metric and 10.5 for FP units.
As the distance z, between the surface of the source and the receiver, is reduced to zero,

Eq. 8.87 can be simplified to

. 1 4
L, &Ly + 10Tog [5 + ﬁ] +K (8.8%)

where § is the surface area of the source. When the receiver is far from the source the area
contribution is small and the distance to the surface of the source and fo its acoustic center
are nearly equal (z = r). The equation then reverts to its previous form

Q 4
L, = Ly - 10log [m + oK (8.89)

Departure from Diffuse Field Behavior
Tn the power-pressure conversion, when we do not measure the sound pressure level close
to the reflecting surfaces, we neglect some energy near the boundary given in Eq. 8.74.
Waterhouse (1955) has investigated this energy and has suggested the addition of a correction
term to the room constant, which is only significant at low frequencies.

RAlSTk AmV 8.90
= A —1—8—\/——{—m (8.90)

where ST is the total surface area and V the volume of the room. The correction is used in
certain test procedures (¢.g., ISO 3741 and ASTM E336).
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FiGURE 8.14 Measured (Power — Pressure) Level Differences (Davis and Davis, 1978)
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When rooms have a significant dimensional variation in different directions, particu- .
larly where there are low ceilings with a large amount of absorption, therc is a departure from
the behavior predicted by the Hopkins Stryker equation. Figure 8.14 shows measurements
taken by Ogawa (1965) in Japan. A number of authors-have attempted to account for this
behavior by adding additional empirical terms ot multipliers to the equation. Hodgson (199 8)

has published a review of several of these methods.

Franzoni and Labrozzi (1999) developed an empirical formula that applies to long,
narrow, rectangular rooms, when the absorption is not uniformly distributed on all surfaces.
For a source positioned near one wall and the geometry shown in Fig, §.15,

=2  _ 4‘00 COW l:(l _atotal)(1 __'Etolal/z)
(1 -&, S/2)

ey A

]e—(m) &y, 5% (8.91)
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W Te — g :
78) where Proy = €1 oss-sectionally avera’tged mean square acoustic pressure (Pa?) at a
distance x from the origin (not the source)
A = total arca of absorption in the room (sabins)
B =S, +5,0, + S0, +-+ 5

' atitai =A/ Stotal i . .
‘ &,, = total absorption of the side surfaces divided by the area of the side surfaces

x=x/},
/ S = ratio of the side wall surface area to the cross sectienal surface area

i Reverberant Falloff in Long Narrow Rooms

Franzoni (2001) also published a theoretical treatment of the long-narrow room problem by
considering an energy balance for diffuse-field components traveling to the right and to the
left using the geometry in Fig. 8.15. She assumes that there is a locaily diffuse condition,
where energy incidence is equally probable in all directions from a hemisphere at a planar
slice across the room, but the rightward energy does not necessarily equal the leftward energy.
The total cnergy at a point is taken to be uncorrelated and can be expressed as the sum of the
two directional components

¢ -2

pP=p , +PB’, (8.92)

At a given slice the reverberant intensity, due to rightward moving waves, is

=2

p—!—x
I, = -—+% (8.93)
T pyeg

and similarly for the leftward moving waves.
 To evaluate the effect of reflections from the side surfaces we write the mean square
pressure near the wall as the sum of the incident and reflected components interacting with

the sides
=2 =2 =2 =2
= + ] —a ) =(2—« 8.04
p'i"X p+xinc-idcnt p+ Xincidcnt( W) ( W)p+ Kincident ( )
The incident intensity into the side wall boundary (y or z) is
| 2
p_s_x, . ﬁz 1 .
1. —L=IL =1, = ¥ *incident — +x 8..95
sidewall s Y Z 2 '00 ¢ ) 2y CO 2 oy, ( )

where ﬁf « = mean square pressure associated with rightward traveling waves, incident
plus reflected.

If we define 8 as the fraction of the surface area at a cross section, covered with an absorbing
material having a random incidence absorption coefficient «,, and /; and § as the perimeter
and area of the cross section, we can write a power balance relation equating the power in to
the power out of the cross section.

dl '
i 1)(5:(1){—5— d;Ax)S—f—o:wﬁprxls (8.96)
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This can be written as a differential equation

d (I_)—Ex) ay Bl

dx 2—a,)S Pix =0 (8:97)
which has a solution for right-running waves
F_fo _ P+xe_m’“’ BIDIU2 ~ g} $)% © (8.98)
and another for lefi-running waves
B2, =D_ et @A)/ —a) (8.99)

where P__ and P +x arc coeffictents to be determined by the boundary conditions at each
end. At the absorbing end (x = 0) the right and left intensitics are related

L0 =(1-a)I, (0 (8.100)

with & being the end wall randor incidence absorption coefficient. The coefficients in
Eqgs. 8.98 and §.99 are related

Po=U-a)P, (8.101)

At the source-end wall, the power of the sources is equal to the power difference in right and
left traveling waves

W=5S[L, (1) —1_ (—i)] (8.102)

Plugging in the mean square pressure terms and using Eq. 8.101 (Franzoni, 2001),

I
2p,c, W cosh(yx) — 2% etrx

() (8.103)

, 1 _
sinh (¥4, ) + 7% € ri

where y = w,, 8 i'p / [(2 — ) S]. Although this formula is somewhat more complicated
than Eq. 8.91 it is still straightforward to use.

The result given by Egs. 8.91 and 8.103 can be compared to more detailed calculations
in F1g. 8.16. The agreement is good for both equations. Franzoni (2001) gives several other
examples for different absorption coefficients, which also yield good agreement,

Reverberant Energy Balance in Long Narrow Rooms

An encrgy balance must still be maintained, where the energy produced by the source is
absorbed by the materials in the room. In the Sabine theory, the balance is expressed as
Eq. 8.83 and the reverberant field cnergy is assumed to be equally distributed throughout
the room. In Franzoni’s modified Sabine approach, the average reverberant field energy is
the same as Sabine’s, but the distribution is uneven. The average energy can be obtained
either by integrating Eq. 8.103 over the length of the room or from the tollowing arguments,

o —
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FiGure 8.16 Cemparison of Falloff Data—Empirical Fit and Theorctical
(Franzoni, 2001)
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The power removed from the room is
Wou= 2. T oF (8.104)
absarbing surface
surfaces, 1

The intensity incident on a surface is due to both the direct and reverberant-field components.

. From Eq. 8.94 the reverberant energy into a boundary surface is

—2 =2
2 2 1
Ir _ Pincident — p (8]05)

200 2p5c, 2 — )

and the average direct-field encrgy is

W,
I, = o (8.106)

Stota!

The power removed by the absorbing surfaces is-
p’ W
W — S S ) n
out Zz‘o{)cﬁ(z_ai)al 1+Z

i i Lotal

oS,
1

1

(8.107)

which in terms of the average mean square pressure is the modified Sabine equation
(Franzoni, 2001)

4 Wi, p, €
=2 _ in Py Ly B
Pspatial _ﬁ: >« S, /(1 —a/2) (1 Zi % Safsmm) (8.108)
i

average
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When the same absorption coefficient applies to all surfaces this simplifies to

4Wi p, ¢
-2 _ m 4] 0, _ _
patial A LT /D= A/Sy) (8.109)
average

The first term in the parentheses is a correction to the Sabine formula for the difference
between the incoming and outgoing waves, and the second term is the power removed by

the first reflection. Figure 8.16 also shows the results to be quite close to exact numerical
simulations of the sound field.

Fine Structure of the Sound Decay

When an impulsive source such as a gunshot, bursting balloon, or electronically induced
pulse excites a room with a brief impulsive sound, the room response contains a great deal of
information about the acoustic properties of the space. First there is the initial sound decay
in the first 10 to 20 msec of drop after the initial burst. The reverberation time based on
this region is called the early decay time (EDT) and it is the time we react to. After the
first impulse there is a string of pulses, which are the reflections from surfaces nearest the
source and receiver. Thereafter follows a complicated train of pulses, which are the first few
orders of reflections from the room surfaces. In this region the acoustical defects present
in the room begin to appear. Long-delayed reflections show up as isolated pulses, Flutter
echocs appear as repeated reflections that do not die out as quickly as the normal reverberant
tail. Focusing can cause sound concentrations, which increase the reflected sound above the
inttial impulse. If the energy-time behavior of the room is filtered, it can be used to explore
regions where modal patterns have formed and can contribute to coloration. A typical graph
is shown in Fig. 8.17.

When two rooms are acoustically coupled the reverberation pattern in one room affects
the sound in the other. When one has a longer reverberation fime it may lead to a dual-slope
reverberation pattern in the other. Consequently it is good practice to match the decay patterns

of adjacent rooms unless it is the purpose to use one to augment the reverberant tail of the
other.

FIGURE 8.17 Energy vs Time for an Impulsive Source

Sound pressure level at a point In a room for an impulsive sound.
The direct sound arrives first followed by discrete reflections
separated In time. Multicle reflections merge to become the
reverberant field.
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