

DÉPARTEMENT ACOUSTIQUE ET ÉCLAIRAGE

Laboratoire d'essais acoustiques

RAPPORT D'ESSAIS N° AC11-26032342/1 CONCERNANT UNE CLOISON

L'accréditation de la section Laboratoires du COFRAC atteste de la compétence des laboratoires pour les seuls essais couverts par l'accréditation.

Ce rapport d'essais atteste uniquement des caractéristiques de l'objet soumis aux essais et ne préjuge pas des caractéristiques de produits similaires. Il ne constitue pas une certification de produits au sens de l'article L 115-27 du code de la consommation et de la loi du 3 juin 1994.

En cas d'émission du présent rapport par voie électronique et/ou sur support physique électronique, seul le rapport sous forme de support papier signé par le CSTB fait foi en cas de litige. Ce rapport sous forme de support papier est conservé au CSTB pendant une durée minimale de 10 ans.

La reproduction de ce rapport d'essais n'est autorisée que sous sa forme intégrale.

Il comporte huit pages.

À LA DEMANDE DE : KNAUF

Z.A Rue Principale 68600 WOLFGANTZEN

N/Réf.: BR-70027777 26032342

PK/GA

OBJET

Déterminer l'indice d'affaiblissement acoustique R d'une cloison.

TEXTES DE RÉFÉRENCE

Les mesures sont réalisées selon les normes NF EN ISO 140-1 (1997), NF EN 20140-2 (1993) et NF EN ISO 140-3 (1995) complétées par la norme NF EN ISO 717/1 (1997), et amendements associés.

OBJET SOUMIS À L'ESSAI

Date de réception au laboratoire : 24 Août 2011 Origine et mise en œuvre : Demandeur

LISTE RÉCAPITULATIVE DES ESSAIS

N° essai Objet soumis à l'essai

1 Cloison séparative KMA 180/48-2 avec KA25 Phonik +

Fait à Marne-la-Vallée, le 28 octobre 2011

Le chargé d'essais

Pierre KERDUDOU

Le responsable du pôle

Jean-Baptiste CHÉNÉ

DESCRIPTION ET MISE EN ŒUVRE D'UNE CLOISON

Essai

Date 30/08/11 Poste EPSILON

DEMANDEUR, FABRICANT KNAUF

APPELLATION Cloison séparative KMA 180/48-2

CONFIGURATION KA25 Phonik +

CARACTÉRISTIQUES PRINCIPALES

Dimensions en mm : 4180 x 2470

Épaisseur en mm : 180

Masse surfacique en kg/m²: 46,4 (hors ossature)

DESCRIPTION (Les dimensions sont données en mm)

Ossature	En acier galvanisé. Rails haut et bas : réf. R48 (KNAUF) Montants : réf. M48-50 (KNAUF) Bande de largeur 50 réf. Bande résiliente (KNAUF) sous les rails en partie basse.
Parements	Une peau en plaques de plâtre cartonnées BA25 réf. KA25 Phonik + (KNAUF), de dimensions 900 x 2500 x 25 et de masse surfacique mesurée 21,5 kg/m², constituées de plaques réf. KS13 (KNAUF) et réf. Diamant phonique 13 collées entres elles par cordon.
Âme	Laine de verre réf. ULTRACOUSTIC SOFT 45 mm (KNAUF INSULATION) en rouleaux de 8000 x 900 x 45 et de masse volumique mesurée 38,3 kg/m³.
Finition	Enduit réf. EJR (KNAUF) + bandes. Mastic silicone réf. Mastic Acoustique (KNAUF).

MISE EN ŒUVRE (Les dimensions sont données en mm)

Les ossatures périphériques, espacées de 40, sont chevillées au cadre d'essai au pas de 600.

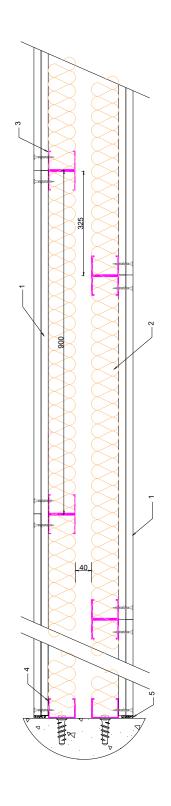
Les montants intermédiaires sont doublés par vissage au pas de 900 de deux éléments. Ils sont ensuite introduits dans les rails tous les 900 et décalés de 325 d'une ossature à l'autre. Ils maintiennent les lés de l'âme par simple compression.

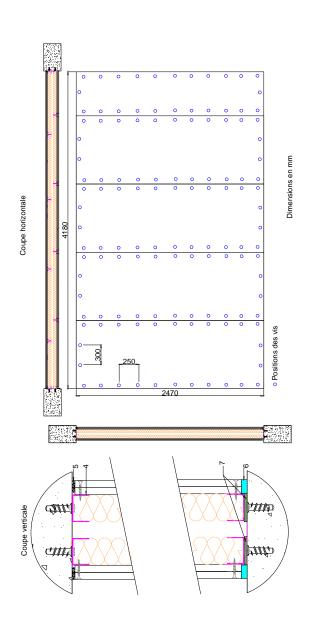
Les plaques de parements, positionnées à joints décalés d'une face à l'autre, sont vissées sur l'ossature au pas de 250.

Le traitement des joints entre plaques et en cueillie (de largeur 5 environ en partie haute et latéralement) est réalisé par un système d'enduit à prise rapide et bande à joint. En partie basse, le joint d'environ 10 est rempli par du mastic souple.

PLAN D'UNE CLOISON

Essai


30/08/11 Date


Poste **EPSILON**

DEMANDEUR, FABRICANT KNAUF

APPELLATION Cloison séparative KMA 180/48-2

CONFIGURATION KA25 Phonik +

1: KA25 Phonik + (KNAUF)

2: ULTRACOUSTIC SOFT 45 mm (KNAUF)

3: Montants M48-50 (KNAUF)

4: Rails R48 (KNAUF)

5 : Enduit + bandes (KNAUF)

6 : Silicone (KNAUF)

7 : Bandes résilientes (KNAUF)

INDICE D'AFFAIBLISSEMENT ACOUSTIQUE R D'UNE CLOISON

Essai Date

30/08/11 **Poste EPSILON**

AD12

DEMANDEUR, FABRICANT KNAUF

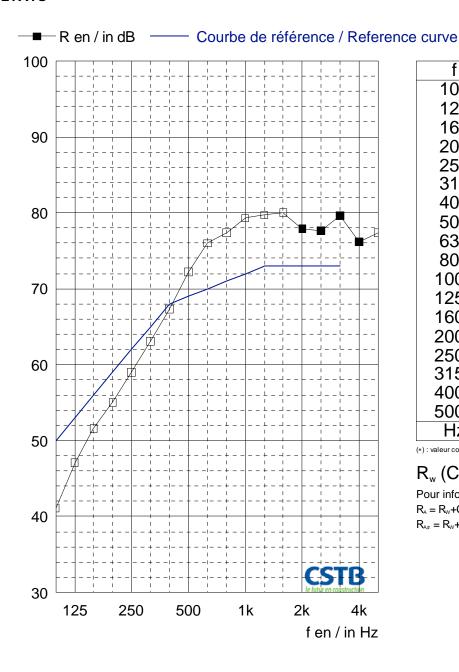
APPELLATION Cloison séparative KMA 180/48-2

CONFIGURATION KA25 Phonik +

CARACTÉRISTIQUES PRINCIPALES

Dimensions en mm : 4180 x 2470

Épaisseur en mm : 180


Masse surfacique en kg/m²: 46,4 (hors ossature)

CONDITIONS DE MESURES

Salle émission : Salle réception : Température : 22 °C Température : 23 °C

Humidité relative : 57 % Humidité relative : 55 %

RÉSULTATS

f	R
100	41,1 ⁺ (52,6)
125	47,1 ⁺ (57,9)
160	51,6 ⁺ (62,6)
200	55,0 ⁺ (65,4)
250	59,0 ⁺ (67,6)
315	63,1 ⁺ (70,6)
400	67,3 ⁺ (75,6)
500	$72,2^{+}$ (77,6)
630	76,0 ⁺ (81,1)
800	77,4 ⁺ (84,3)
1000	79,3 ⁺ (89,5)
1250	79,7 ⁺ (91,6)
1600	80,0 ⁺ (93,0)
2000	77,9
2500	77,6
3150	79,6
4000	76,2
5000	77,4 ⁺ (90,0)
Hz	dB

(*) : valeur corrigée/corrected value. (+) : limite de poste/station limit.

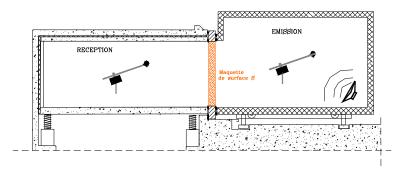
 R_w (C;C_{tr}) \geq 69(-3;-10) dB

Pour information / For information:

 $R_A = R_W + C \ge 66 \text{ dB}$ $R_{\scriptscriptstyle A,tr} = R_{\scriptscriptstyle W} \text{+} C_{\scriptscriptstyle tr} \geq 59 \; dB$

ANNEXE 1 MÉTHODE D'ÉVALUATION ET EXPRESSION DES RÉSULTATS

INDICE D'AFFAIBLISSEMENT ACOUSTIQUE AU BRUIT AÉRIEN R


Méthode d'évaluation : NF EN ISO 140-3 (1995)

La norme NF EN ISO 140-3 (1995) est la méthode d'évaluation de l'isolement acoustique aux bruits aériens des éléments de construction tels que murs, plancher, portes, fenêtres, éléments de façades, façades, ...

Le mesurage doit être réalisé dans un laboratoire d'essai sans transmissions latérales. Le poste d'essai utilisé est composé de deux salles : une salle fixe contre laquelle nous fixons le cadre support de l'échantillon à tester et une salle mobile réalisant ainsi un couple « salle d'émission – salle de réception ». Ces salles et le cadre sont totalement désolidarisés entre eux (joints néoprènes) et sont conformes à la norme NF EN ISO 140-1 (1997). La conception des salles (boîte dans la boîte) procure une forte isolation acoustique vis-à-vis de l'extérieur et permet de mesurer des niveaux de bruit de fond très faibles.

Mesure par tiers d'octave, de 100 à 5000 Hz :

- du niveau de bruit de fond dans le local de réception L_{BdF}
- de l'isolement brut : L_E L_R
- de la durée de réverbération du local de réception T

Calcul de l'indice d'affaiblissement acoustique R en dB pour chaque tiers d'octave :

$$R = L_E - L_R + 10 \log (S/A)$$

L_E : Niveau sonore dans le local d'émission en dB

L_R : Niveau sonore dans le local de réception, corrigé du bruit de fond en dB

S : surface de la maquette à tester en m²

A : Aire équivalente d'absorption dans le local de réception en m²

A = (0.16 x V)/T où V est le volume du local de réception en m³

et T est la durée de réverbération du même local en s.

Plus R est grand, plus l'élément testé est performant.

Expression des résultats : Calcul de l'indice unique pondéré $R_w(C;C_{tr})$ selon la norme NF EN ISO 717-1 (1997)

Prise en compte des valeurs de R par tiers d'octave entre 100 et 3150 Hz avec une précision au 1/10ème de dB.

Déplacement vertical d'une courbe de référence par saut de 1 dB jusqu'à ce que la somme des écarts défavorables soit la plus grande tout en restant inférieure ou égale à 32,0 dB.

R_w en dB est la valeur donnée alors par la courbe de référence à 500 Hz.

Les termes d'adaptation à un spectre (C et C_{tr}) sont calculés à l'aide de spectres de référence pour obtenir :

- L'isolement vis-à-vis de bruits de voisinage, d'activités industrielles ou aéroportuaire : $R_A = R_w + C$ en dB
- L'isolement vis-à-vis du bruit d'infrastructure de transport terrestre : $R_{A/tr} = R_W + C_{tr}$ en dB

ANNEXE 2 – APPAREILLAGE

POSTE EPSILON

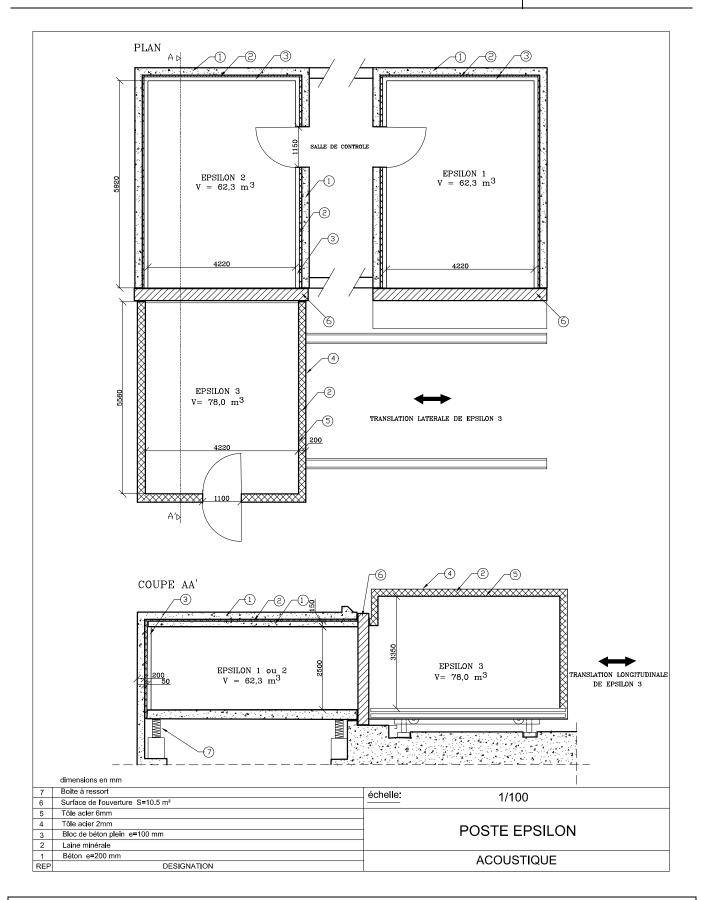
Salle d'émission : EPSILON 3

DÉSIGNATION	MARQUE	TYPE	N° CSTB
Chaîne microphonique	Bruël & Kjær	Microphone 4166	CSTB 01 0215
	Bruël & Kjær	Préamplificateur 2669	
Bras tournant	Bruël & Kjær	3923	CSTB 97 0162
Amplificateur	LAB GRUPPEN	LAB1000	CSTB 97 0195
Source	CSTB-PHL AUDIO	Cube	CSTB 97 0187
Source	CSTB-PHL AUDIO	Cube	CSTB 97 0189

Salle de réception : EPSILON 1

DÉSIGNATION	MARQUE	TYPE	N° CSTB	
Chaîne microphonique	Bruël & Kjær	Microphone 4166	CSTB 01 0209	
	Bruël & Kjær	Préamplificateur 2669		
Bras tournant	Bruël & Kjær	3923	CSTB 80 0007	
Amplificateur	CARVER	PM600	CSTB 91 0121	
Source	CSTB-ELECTRO VOICE	Pyramide	CSTB 97 0200	

Salle de commande


DÉSIGNATION	MARQUE	TYPE	N° CSTB
Analyseur temps réel	Bruël & Kjær	2144	CSTB 95 0146
Micro-ordinateur	DELL	OPTIPLEX GX 270	
Calibreur	Bruël & Kjær	4231	CSTB 04 1839

ANNEXE 3 - PLAN DU POSTE D'ESSAIS

POSTE EPSILON

FIN DE RAPPORT