

DÉPARTEMENT ACOUSTIQUE ET ÉCLAIRAGE

Laboratoire d'essais acoustiques

RAPPORT D'ESSAIS N° AC11-26033004 CONCERNANT DEUX PAROIS AVEC ET SANS COMPLEXE DE DOUBLAGE

L'accréditation de la section Laboratoires du COFRAC atteste de la compétence des laboratoires pour les seuls essais couverts par l'accréditation.

Ce rapport d'essais atteste uniquement des caractéristiques de l'objet soumis aux essais et ne préjuge pas des caractéristiques de produits similaires. Il ne constitue pas une certification de produits au sens de l'article L 115-27 du code de la consommation et de la loi du 3 juin 1994.

En cas d'émission du présent rapport par voie électronique et/ou sur support physique électronique, seul le rapport sous forme de support papier signé par le CSTB fait foi en cas de litige. Ce rapport sous forme de support papier est conservé au CSTB pendant une durée minimale de 10 ans.

La reproduction de ce rapport d'essais n'est autorisée que sous sa forme intégrale.

Il comporte seize pages.

À LA DEMANDE DE : LAFARGE CENTRE DE RECHERCHE

95 rue du Montmurier Boîte Postale 15

38291 SAINT-QUENTIN FALLAVIER CEDEX

N/Réf.: BR-70027660 et 70027659

26033004 et 26033287

CC/GA

OBJET

Déterminer l'indice d'affaiblissement acoustique R de deux parois en béton avec et sans complexe de doublage.

TEXTES DE RÉFÉRENCE

Les mesures acoustiques sont réalisées selon les normes NF EN ISO 140-1 (1997), NF EN 20140-2 (1993) et NF EN ISO 140-3 (1995) complétées par la norme NF EN ISO 717/1 (1997).

Les mesures effectuées pour le calcul de la raideur dynamique de l'isolant sont réalisées sous une charge de 8 kg, selon la norme NF EN 29052-1 (1992) "Détermination de la raideur dynamique".

OBJET SOUMIS À L'ESSAI

Date de réception au laboratoire : 9 Août 2011 (doublage)

Origine: LAFARGE CENTRE DE RECHERCHE (béton) et LAFARGE PLATRES (doublage)

Mise en œuvre : CSTB

LISTE RÉCAPITULATIVE DES ESSAIS

N° essai	Objet soumis à l'essai
1 2	Paroi en béton d'épaisseur 160 seule Paroi en béton d'épaisseur 160 avec complexe de doublage Prégymax th 29,5 13 + 100
3	Paroi en béton d'épaisseur 200 seule

Fait à Marne-la-Vallée, le 10 octobre 2011

Le chargé d'essais

Corinne CATOIRE

Le responsable du pôle

Jean-Baptiste CHÉNÉ

DESCRIPTIF DE LA PAROI ET DE SON COMPLEXE DE DOUBLAGE

Essais 1 et 2 Date 19/08/11 Poste EPSILON

DEMANDEUR LAFARGE CENTRE DE RECHERCHE

FABRICANTS LAFARGE CENTRE DE RECHERCHE (paroi support)

LAFARGE PLATRES (complexe de doublage)

PAROI SUPPORT Voile de béton d'épaisseur 160 mm

DOUBLAGE Prégymax th 29,5 13 + 100

APTITUDE À L'EMPLOI Béton Thermedia 0.6 B relevant du Constat de Traditionalité

n° 20/10-170

CARACTÉRISTIQUES PRINCIPALES

Dimensions de l'ouverture d'essai en mm : 4180 x 2470

Épaisseur totale en mm : 283 (mur avec son doublage)

Masse surfacique totale en kg/m^2 : ≈ 265

DESCRIPTION (Les dimensions sont données en mm)

	Voile de béton armé d'épaisseur 160.			
Paroi support	Composition : ciment (450 à 650 kg/m³) + granulats légers (650 à 780 kg/m³) + adjuvants (0,3 - 0,6 % en poids) + air entraı̂né (0,05 à 0,2 % en poids) + eau (230 à 280 l/m³).			
	Masse surfacique mesurée (ferraillage compris) : 254 kg/m²			
Complexe de doublage	Réf. Prégymax th 29,5 13 + 100 (LAFARGE PLATRES), de masse surfacique mesurée 11,1 kg/m², constitué : - d'une plaque de plâtre cartonnée PREGY BA13 d'épaisseur 12,5. - d'un primitif en PSEE d'épaisseur 100, Raideur dynamique s' : 2 MN/m³ sous plaque de charge de 8 kg			
Collage du complexe de doublage	Mortier adhésif réf. PRÉGYCOLLE120 (LAFARGE PLATRES)			
Finition	 Enduit à prise rapide réf. PREGYLYS (LAFARGE PLATRES) + bande. Mastic acrylique 			

MISE EN ŒUVRE DU COMPLEXE DE DOUBLAGE

Essais 1 et 2 Date 19/08/11 Poste EPSILON

DEMANDEUR LAFARGE CENTRE DE RECHERCHE

FABRICANTS LAFARGE CENTRE DE RECHERCHE (paroi support)

LAFARGE PLATRES (complexe de doublage)

PAROI SUPPORT Voile de béton d'épaisseur 160 mm

DOUBLAGE Prégymax th 29,5 13 + 100

APTITUDE À L'EMPLOI Béton Thermedia 0.6 B relevant du Constat de Traditionalité

n° 20/10-170

MISE EN ŒUVRE (les dimensions sont données en mm)

Complexe de doublage :

Son collage sur la paroi support est assuré selon les recommandations du DTU 25-42 avec un mortier à prise rapide ($7 \times 4 = 28$ plots, de diamètre 100 et d'épaisseur 15 avant écrasement, et d'épaisseur 10 après écrasement).

Le traitement des joints entre plaques et en cueillie (de largeur 5 environ en partie haute et latéralement) est réalisé par un système enduit à prise rapide et bande à joint.

En partie basse, le joint d'environ 10 est rempli par du mastic souple.

REMARQUE

Les essais sont réalisés un mois après la construction de la paroi, et un jour après la mise en œuvre du complexe.

CONDITIONS DE MESURES

Salle émission Salle réception

Essai 1 : Température : 24 °C Température : 24 °C

Humidité relative : 70 % Humidité relative : 69 %

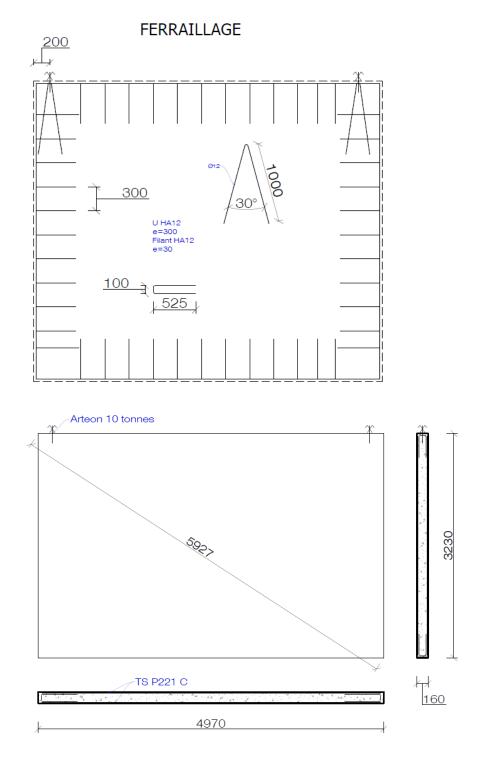
Essai 2 : Température : 24 °C Température : 24 °C

Humidité relative : 70 % Humidité relative : 69 %

PLANS DE LA PAROI Essais 1 et 2 Date 19/08/11 Poste EPSILON

DEMANDEUR LAFARGE CENTRE DE RECHERCHE

FABRICANTS LAFARGE CENTRE DE RECHERCHE (paroi support)


LAFARGE PLATRES (complexe de doublage)

PAROI SUPPORT Voile de béton d'épaisseur 160 mm

DOUBLAGE Prégymax th 29,5 13 + 100

APTITUDE À L'EMPLOI Béton Thermedia 0.6 B relevant du Constat de Traditionalité

n° 20/10-170

PLANS DE LA PAROI AVEC SON COMPLEXE DE DOUBLAGE

Essais 1 et 2 Date 19/08/11 Poste **EPSILON**

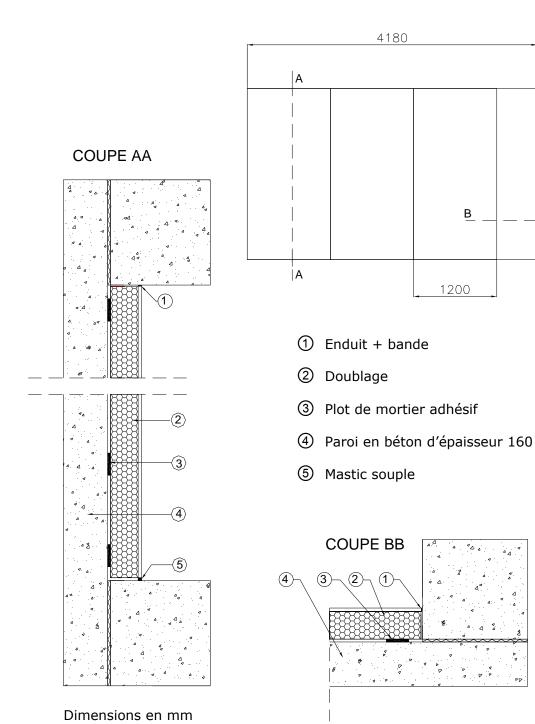
2470

В

В

DEMANDEUR LAFARGE CENTRE DE RECHERCHE

FABRICANTS LAFARGE CENTRE DE RECHERCHE (paroi support)


LAFARGE PLATRES (complexe de doublage)

PAROI SUPPORT Voile de béton d'épaisseur 160 mm

DOUBLAGE Prégymax th 29,5 13 + 100

APTITUDE À L'EMPLOI Béton Thermedia 0.6 B relevant du Constat de Traditionalité

n° 20/10-170

INDICE D'AFFAIBLISSEMENT ACOUSTIQUE R DE LA PAROI AVEC ET SANS COMPLEXE DE DOUBLAGE

Essais 1 et 2 19/08/11 Date

Poste EPSILON

LAFARGE CENTRE DE RECHERCHE **DEMANDEUR**

FABRICANTS LAFARGE CENTRE DE RECHERCHE (paroi support)

LAFARGE PLATRES (complexe de doublage)

PAROI SUPPORT Voile de béton d'épaisseur 160 mm

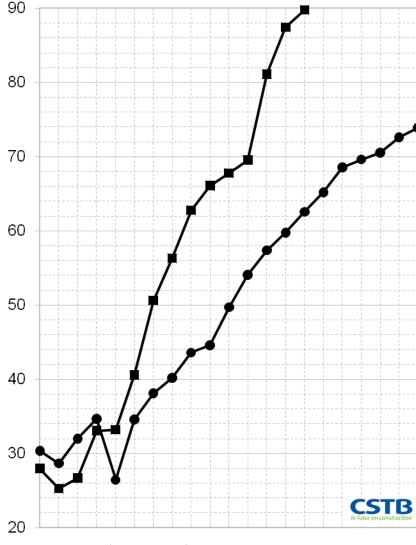
DOUBLAGE Prégymax th 29,5 13 + 100

APTITUDE À L'EMPLOI Béton Thermedia 0.6 B relevant du Constat de Traditionalité

n° 20/10-170

CARACTÉRISTIQUES PRINCIPALES

Dimensions de l'ouverture d'essai en mm : 4180 x 2470


Épaisseur totale en mm : 283 (mur avec son doublage)

Masse surfacique totale en kg/m² : ≈ 265

RÉSULTATS ■ Essai : paroi support avec le complexe de doublage

Essai : paroi support seule

Code		•
Fr [Hz]	R [dB]	R [dB]
50	28,0	30,4
63	25,3	28,7
80	26,7	32,0
100	33,1	34,7
125	33,2	26,5
160	40,6	34,6
200	50,6	38,1
250	56,3	40,2
315	62,8	43,6
400	66,1	44,6
500	67,8	49,7
630	69,6	54,1
800	81,1	57,4
1000	87,5	59,8
1250	89,8	62,6
1600	97,0	65,2
2000	99,2	68,6
2500	98,5	69,6
3150	98,4	70,6
4000	100,2	72,6
5000	98,8	73,9

	$R_w(C; C_{tr}) = 61(-5; -12) dB$ $R_w(C; C_{tr}) = 51(-2; -7) dB$
•	$R_w(C; C_{tr}) = 51(-2; -7) dB$

f en / in Hz

DESCRIPTIF DE LA PAROI

Essai

Date 31/08/11 Poste **EPSILON**

LAFARGE CENTRE DE RECHERCHE **DEMANDEUR, FABRICANT**

PAROI SUPPORT Voile de béton d'épaisseur 200 mm

APTITUDE À L'EMPLOI Béton Thermedia 0.6 B relevant du Constat de Traditionalité

n° 20/10-170

CARACTÉRISTIQUES PRINCIPALES

Dimensions de l'ouverture d'essai en mm : 4180 x 2470

Épaisseur totale en mm : 200 Masse surfacique totale en kg/m² : 315

DESCRIPTION (Les dimensions sont données en mm)

	Voile de béton armé d'épaisseur 200.
Paroi support	Composition : ciment (450 à 650 kg/m 3) + granulats légers (650 à 780 kg/m 3) + adjuvants (0,3-0,6% en poids) + air entraîné (0,05 à 0,2% en poids) + eau (230 à 280 l/m 3).
	Masse surfacique mesurée (ferraillage compris) : 315 kg/m²

REMARQUE

Les essais sont réalisés 43 jours après la construction de la paroi.

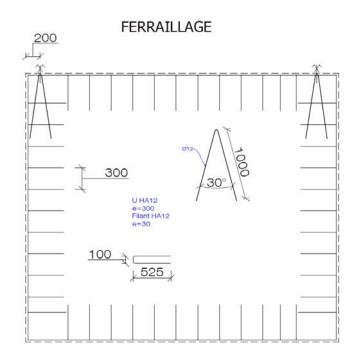
CONDITIONS DE MESURES

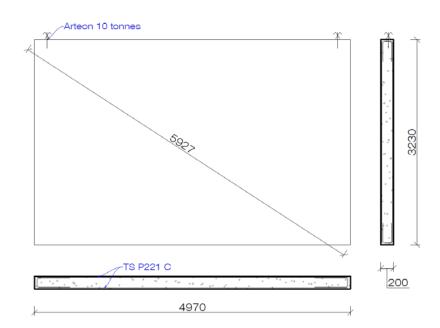
	Salle émission	Salle réception
Essai 1 :	Température : 22,5 °C Humidité relative : 67 %	Température : 23 °C Humidité relative : 68 %
Essai 2 :	Température : 22,5 °C Humidité relative : 67 %	Température : 23 °C Humidité relative : 68 %

PLANS DE LA PAROI

Essai 3

Date 3
Poste I


31/08/11 EPSILON


DEMANDEUR LAFARGE CENTRE DE RECHERCHE

PAROI SUPPORT Voile de béton d'épaisseur 200 mm

APTITUDE À L'EMPLOI Béton Thermedia 0.6 B relevant du Constat de Traditionalité

n° 20/10-170

INDICE D'AFFAIBLISSEMENT ACOUSTIQUE R DE LA PAROI

AD12

Essai 3 Date 3

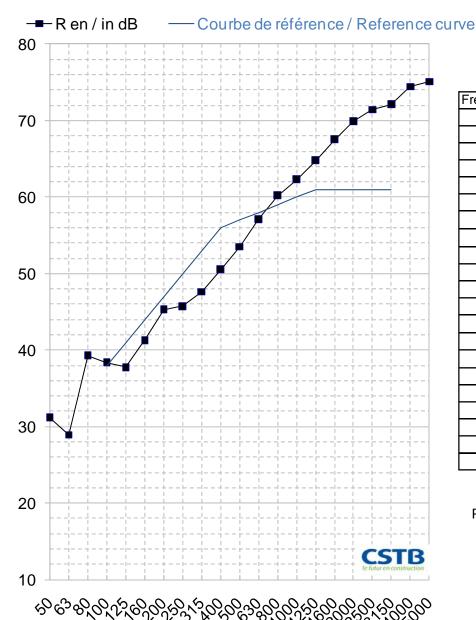
Date 31/08/11 Poste EPSILON

ם ניום

DEMANDEUR, FABRICANT LAFARGE CENTRE DE RECHERCHE

PAROI SUPPORT Voile de béton d'épaisseur 200 mm

APTITUDE À L'EMPLOI Béton Thermedia 0.6 B relevant du Constat de Traditionalité


n° 20/10-170

CARACTÉRISTIQUES PRINCIPALES

Dimensions de l'ouverture d'essai en mm : 4180 x 2470

Épaisseur totale en mm : 200 Masse surfacique totale en kg/m² : 315

RÉSULTATS

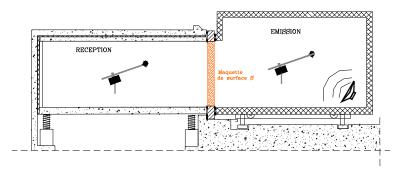
R [dB]
31,2
28,9
39,3
38,4
37,8
41,3
45,3
45,8
47,6
50,5
53,5
57,1
60,2
62,3
64,8
67,6
69,9
71,4
72,1
74,4
75,1

 $R_w(C ; C_{tr}) = 57(-1 ; -6) dB$

fen / in Hz

ANNEXE 1 MÉTHODE D'ÉVALUATION ET EXPRESSION DES RÉSULTATS

INDICE D'AFFAIBLISSEMENT ACOUSTIQUE AU BRUIT AÉRIEN R


Méthode d'évaluation : NF EN ISO 140-3 (1995)

La norme NF EN ISO 140-3 (1995) est la méthode d'évaluation de l'isolement acoustique aux bruits aériens des éléments de construction tels que murs, plancher, portes, fenêtres, éléments de façades, façades, ...

Le mesurage doit être réalisé dans un laboratoire d'essai sans transmissions latérales. Le poste d'essai utilisé est composé de deux salles : une salle fixe contre laquelle nous fixons le cadre support de l'échantillon à tester et une salle mobile réalisant ainsi un couple « salle d'émission – salle de réception ». Ces salles et le cadre sont totalement désolidarisés entre eux (joints néoprènes) et sont conformes à la norme NF EN ISO 140-1 (1997). La conception des salles (boîte dans la boîte) procure une forte isolation acoustique vis-à-vis de l'extérieur et permet de mesurer des niveaux de bruit de fond très faibles.

Mesure par tiers d'octave, de 100 à 5000 Hz :

- du niveau de bruit de fond dans le local de réception L_{BdF}
- de l'isolement brut : L_E L_R
- de la durée de réverbération du local de réception T

Calcul de l'indice d'affaiblissement acoustique R en dB pour chaque tiers d'octave :

$$R = L_E - L_R + 10 \log (S/A)$$

L_E : Niveau sonore dans le local d'émission en dB

L_R : Niveau sonore dans le local de réception, corrigé du bruit de fond en dB

S : surface de la maquette à tester en m²

A : Aire équivalente d'absorption dans le local de réception en m²

 $A = (0.16 \times V)/T$ où V est le volume du local de réception en m³

et T est la durée de réverbération du même local en s.

Plus R est grand, plus l'élément testé est performant.

Expression des résultats : Calcul de l'indice unique pondéré $R_w(C;C_{tr})$ selon la norme NF EN ISO 717-1 (1997)

Prise en compte des valeurs de R par tiers d'octave entre 100 et 3150 Hz avec une précision au 1/10ème de dB.

Déplacement vertical d'une courbe de référence par saut de 1 dB jusqu'à ce que la somme des écarts défavorables soit la plus grande tout en restant inférieure ou égale à 32,0 dB.

R_w en dB est la valeur donnée alors par la courbe de référence à 500 Hz.

Les termes d'adaptation à un spectre (C et C_{tr}) sont calculés à l'aide de spectres de référence pour obtenir :

- L'isolement vis-à-vis de bruits de voisinage, d'activités industrielles ou aéroportuaire : $R_A = R_w + C$ en dB
- L'isolement vis-à-vis du bruit d'infrastructure de transport terrestre : $R_{A/tr} = R_W + C_{tr}$ en dB

ANNEXE 2 – DÉTERMINATION DE LA RAIDEUR DYNAMIQUE S' D'UN COMPLEXE DE DOUBLAGE

Date Poste SIGMA

DEMANDEUR LAFARGE CENTRE DE RECHERCHE

FABRICANT LAFARGE PLATRES

RÉSULTATS

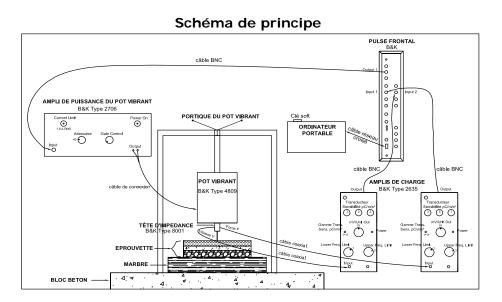
Numéro d'essai :	R11-26033004			Date de scellement:	31/08/2011
Nom du client :	LAFARGE			Date de l'essai:	01/09/2011
Désignation du produit :		Doublage			
Appellation :		Prégymax th 29,5		Température en °C :	23
Type:		BA13 + PSEE		Humidité relative en % :	62
Dossier AC11-26033004		E	ssai avec vaseline sous	8 kg	
IDENTIFICATION EPROUVETTE	R11-26033004/1	R11-26033004/2	R11-26033004/3	MOYENNE	Incertitude
Masse surfacique de la charge appliqué sur le produit en kg/m²	208	209	209	209	± 2,12
Epaisseur du produit en mm	95,0	95,0	95,0	95,0	± 3,58
Epaisseur de la partie poreuse du produit en mm	0,0	0,0	0,0	0,0	± 0,00
fr en Hz	15,0	15,0	15,4	15,1	± 0,68
η en %	6,5	5,1	6,7	6,1	± 0,47
S't en MN/m³	1,8	1,9	2,0	1,9	± 0,12
S'a en MN/m³	0,0	0,0	0,0	0,0	± 0,00
S' en MN/m³	1,8	1,9	2,0	<u>2</u>	± 0,12

ANNEXE 3 - BANC DE MESURE DE RIGIDITÉ DYNAMIQUE

DÉSIGNATION	MARQUE	TYPE	N° CSTB
Balance	Précia	Quartz 3	CSTB 9300131
Comparateur	Digico		CSTB 06 0168
Thermo - hygromètre	Testo Therm	Thermo – hygromètre 6100	CSTB 91 0110
Analyseur	Bruël & Kjær	PULSE	CSTB 04 1501
Tête d'impédance	Bruël & Kjær	8001	CSTB 05 0371
Amplificateur de charge	Bruël & Kjær	2635	CSTB 04 1502
Amplificateur de charge	Bruël & Kjær	2635	CSTB 04 1503
Excitateur de Vibrations	Bruël & Kjær	4809	CSTB 10 0069
Amplificateur de puissance	Bruël & Kjær	2718	CSTB 05 0369
Calibreur	Bruël & Kjær	4294	CSTB 89 0064

PRINCIPE:

La détermination de la fréquence de résonance fr du système masse / ressort / masse permet d'obtenir la raideur dynamique apparente par unité de surface s't de l'éprouvette suivant l'équation :


$$fr = \frac{1}{2\pi} \sqrt{\frac{s'_t}{m'_t}}$$

avec : m't la masse totale par unité de surface utilisée pendant l'essai

Le dispositif de mesure utilisé par le laboratoire est constitué d'un système Pulse qui génère un signal d'excitation dit "bruit blanc", amplifié par un amplificateur de puissance avant d'être transmis à un pot vibrant.

Une tête d'impédance permet de récupérer la force injectée ainsi que la vitesse de déplacement du système masse / ressort / masse.

Ces signaux sont ensuite amplifiés par des amplificateurs de charge avant d'être transmis au système Pulse pour être traités et analysés.

ANNEXE 4 - EXPRESSION DES RÉSULTATS

- Raideur dynamique par unité de surface s', en MN/m³ :

$$s' = s'_{t} + s'_{a}$$

avec : • s'_t : raideur dynamique apparente par unité de surface de l'éprouvette, en MN/m³

$$s'_t = 4\pi^2 \cdot m_t \cdot f_r^2$$

où : m_t est la masse surfacique de la charge appliquée sur l'éprouvette en kg/m²,

 f_r est la fréquence de résonance en Hz du système Masse – Ressort – Masse

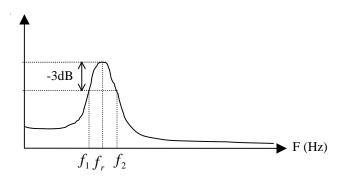
• s'a : raideur dynamique par unité de surface du gaz captif, en MN/m³

$$\mathbf{s'_a} = \frac{Po}{d_t.\varepsilon}$$

où : Po est la pression atmosphérique, en Mpa

 $d_{\scriptscriptstyle l}$ l'épaisseur de la partie poreuse de l'éprouvette sous la charge statique appliquée, en mm

ε est la porosité du matériau


$$\varepsilon = 1 - \frac{M}{\rho \cdot d_t}$$

où : M est la masse surfacique du matériau fibreux de l'éprouvette, en kg/m² ρ est la masse volumique du constituant solide du matériau fibreux, en kg/m³

- Facteur de perte, en % :

$$\eta = \frac{\Delta f}{f_r}.100$$

avec
$$\Delta f = \frac{f_2 - f_1}{f_r}$$

ANNEXE 5 – APPAREILLAGE

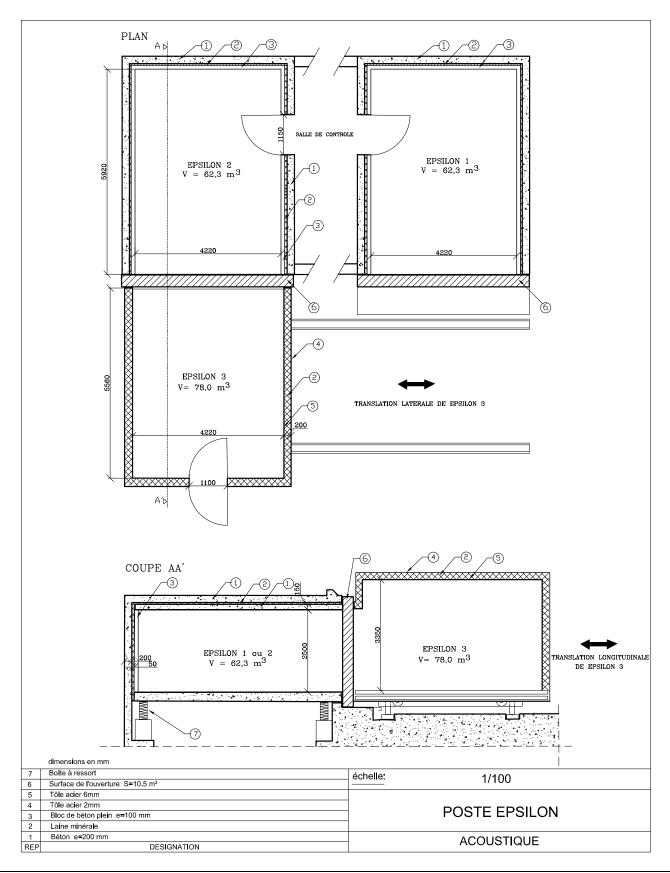
POSTE EPSILON

Salle d'émission : EPSILON 3

DÉSIGNATION	MARQUE	TYPE	N° CSTB	
Chaîne microphonique	Bruël & Kjær	Microphone 4166	CSTB 01 0215	
Chaine microphomque	Bruël & Kjær	Préamplificateur 2669		
Bras tournant	Bruël & Kjær	3923	CSTB 97 0162	
Amplificateur	LAB GRUPPEN	LAB1000	CSTB 97 0195	
Source	CSTB-PHL AUDIO	Cube	CSTB 97 0187	
Source	CSTB-PHL AUDIO	Cube	CSTB 97 0189	

Salle de réception : EPSILON 2

DÉSIGNATION	MARQUE	TYPE	N° CSTB	
Chaîne microphonique	Bruël & Kjær	Microphone 4166	CSTB 01 0213	
Chaine microphomique	Bruël & Kjær	Préamplificateur 2669		
Bras tournant	Bruël & Kjær	3923	CSTB 97 0164	
Amplificateur	CARVER	PM600	CSTB 91 0120	
Source	CSTB-ELECTRO VOICE	Pyramide	CSTB 97 0199	


Salle de commande

DÉSIGNATION	MARQUE	TYPE	N° CSTB
Analyseur temps réel	Bruël & Kjær	2144	CSTB 95 0146
Micro-ordinateur	DELL	OPTIPLEX GX 270	
Calibreur	Bruël & Kjær	4231	CSTB 04 1839

ANNEXE 6 - PLAN DU POSTE D'ESSAIS

POSTE EPSILON

FIN DE RAPPORT