J. Sound Vib. (1966) 3 (3), 262-276

CALCULATION OF POWER FLOW. BETWEEN COUPLED
OSCILLATORSt

D. E. NEwLAND

Department of Mechanical Engineering, City and Guilds College,
Imperial College of Science and T echnology, Exhibition Road, London, S.W.7, England

(Received g Fuly 1965, and in revised form 29 December 1965)

A perturbation method is developed for calculating the statistics of the energy transfer
process between weakly coupled oscillators. The method is used to calculate first-order
approximations for (a) the mean value, and (b) the spectral density of the power flow between
two stiffness coupled oscillators under white noise random excitation. The result for mean
power flow is identical with that obtained by Lyon and Maidanik (1) using an ad hoc method
of linearization. The present method is, however, more general in the sense that it allows
more complicated statistics to be evaluated (for instance, the spectrum of the energy
transmission process), and applies to cases with narrow-band as well as broad-band
excitation. The present method also allows more accurate results to be obtained by
calculating second and higher order approximations.

Among other possible applications, the method looks promising as an additional tool for
the study of noise transmission in structures.

INTRODUCTION

In the last few years there has been an increasing interest in the statistical behaviour of
sets of coupled oscillators. Their response may explain the performance of many apparently
quite different physical systems. For instance, chemical reaction rates may be controlled
by the rate of energy flow between the vibrational modes of molecules. The occurrence of
biological rhythms may be due to a periodic cycling of energy between coupled oscillator
systems, also at the molecular level. Wave interactions in fluids may be explained by the
different rates of inter-modal energy transfer which occur. An important engineering
application is the transmission of noise energy between coupled structures. An under-
standing of this process is important in the search for means of reducing acoustic noise,
and also in controlling fatigue damage in structures subjected to random loading.

In this paper an approximate perturbation method is developed for calculating the
statistics of the energy transmission process between weakly coupled oscillators. Although
the method can be applied to any weakly coupled systems, it is developed here for systems
with conservative “stiffness” coupling terms [see equation (2)]. The analysis follows
closely previous work by the author devoted to the study of nonlinearly coupled oscil-
lators (2). The results are applied to study the motion, under random excitation, of the
two stiffness coupled oscillators shown in Figure 1. Since this two-degree-of-freedom
system is so simple, the exact solution for the mean rate of energy transmission between
the two oscillators is available for comparison with the approximate answer, and an esti-
mate of the accuracy of the method can be obtained. The spectral density of the power flow
between the two oscillators is also calculated, and it is shown that the energy in the system
may flow backwards and forwards between the two oscillators extremely slowly, the energy

t A summary of this paper was first presented at a Symposium ““Engineering applications of advanced
techniques of random process analysis”, organized by the Institute of Sound and Vibration Research,
Southampton, July s—9, 1965.
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263 POWER FLOW BETWEEN COUPLED OSCILLATORS

of one oscillator building up while the other dies down and vice versa. This phenomenon
is closely related to the well-known behaviour of the system in free vibration. However,
although the illustrative examples of the use of the method relate only to a simple two-
degree-of-freedom system, the method is perfectly general, and, as shown in the following
development, applies equally to more complex multi-degree-of-freedom systems (for
which exact solutions are not readily available).
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Figure 1. Mechanical model of two coupled oscillators.

GENERAL ANALYSIS

Consider a system of n uncoupled oscillators. Their equations of motion may be written
m, X, +c, %+ k,x, = f(2), (1)
r=1,2,...,n,

where, in mechanical engineering terms, m,, ¢, and k, are the mass, damping and stiffness
coefficients, and f,(2) is the excitation. The presence of small, linear, stiffness coupling
terms modifies these equations to

n
m &+, %+ kx, = f(D)+ 3 ex,x, (2)
i
v =1,2,...,m1,
where ¢ <1. The a,, coupling coefficients will not all be independent if the coupling is

conservative, since they must then be derivable from a corresponding potential function V.
"This must have the form:

V = ’Z %er?_ E Eﬁrsxsxr ’ (3)

s=1

S#Er
so that, to satisfy Lagrange’s equations of motion the potential gradients are (3)

av “
EC: = kr X, — s§1 G(Brs + ﬁsr) K (4)

sFEr

By comparing equations (2) and (4), it can be seen that

ar.\‘ = aST = (IBYS+BSV)' (5)
Now the force exerted on the rth oscillator by all the other oscillators is

n ;

2 e, (6)
=1

:;ér
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and consequently the rate of energy input to the rth oscillator from all the other oscillators

15
n

Ty (SaY) = E eoc,sxsoé,. (7)

s=1
s#r

The mean power flow to the rth oscillator 17, (say) is simply obtained by averaging
equation (7) to give
I, = E[n] = 3, e, B[, 5] 8)
i3
where the symbol E denotes the expectation or statistical average. Equation (8) may be

rewritten in the following alternative form, which is more convenient for the later
calculations:

n

= e, & Eft) vt ). ©)

7=0
Since, for random excitation, the instantaneous power flow to the rth oscillator is itself a
random variable, its spectral density can be calculated. The autocorrelation of the power

flow is given, for stationary excitation, by
R, (1) = E[= (1) m(t+7)], (10)

which, after being combined with (7), can be written

Rofr) = & 53 5 opgon, Bl ()24 7) o) fe 4] (11)

g=1 s=
q#r SFEY

and the spectral density is the Fourier Transform of R, (), defined as

Sn@) = o= | Rufeordr, (12)

The spectral density of 7, may therefore be calculated provided that R, () is known.
"The problem of calculating the mean power flow /7, and its spectral density S,, (w) thus
comes down to the calculation of the statistical moments in equations (9) and (11), and,
in the case of S, (w), the integration of equation (1 2). In this analysis the moments required
are calculated approximately by a perturbation technique.
It is assumed that the solution for x,(t) permits expansion in powers of the parameter e:

x(t) = x,,(t) + ex, () + 2 x,,() +. .., (13)
7= 1,2,...,0

Substituting these expansions into equation (2) then gives, if the resulting equation is to
be satisfied identically in ¢, the following series of equations for successive approximations,
with the forcing functions of higher order approximations made up of functions of the
previous approximation :

M, &yy €, 8y + Ry 20,y = fr(t)) (143)
n
My &, e & +Rox, = 21 %ps Xsos (14b)
s=
sFEr




265 POWER FLOW BETWEEN COUPLED OSCILLATORS

From equation (14a) the solution for x,,(£) is given by the superposition integral

x(t) = [ B0)1(t~6)db, (15)
0

where £,(8) is the response function of the rth oscillator to a unit impulse input f,(t) = §(6)
when e=o. Similarly, the response of x,,(2) is, from equation (14b)

b4

x,(1) =

s
§

Fibes

- f h(6) (2~ 6) do. (16)

The statistical moment required in equation (9) may be expanded, by using (13), to
Elx(0) %t +7)] = Elxe(t) 2,,(t+7)] + {Ex,,(8) (2 + )] + (17)
+ Elx,,(t) x,,(¢ +7)]} -+ oe?)
and, similarly, that in equation (11) to
El&(8) 4t +7) wg() 224 7)] = E[,,(8) (£ +7) 2, (1) 22+ 7)] + 0(e). (18)

Substituting the results (15) and (16) into equations (17) and (18) then gives final expres-
sions for the required statistical moments, which may be extended by including higher
order terms, to any accuracy desired. From (17)

Elx(#)x,(2+ )]

= [ a8, [ d0,1(0,) 4, (02) B (1~ 0,)f, (¢4 0,)] +

g=1

el 3, [0, [ A8, [ 0300 B8 50 Lt 0,— 0 f (04— ) 4
0 0 0

+ 3 oy [ 01 [ 40, [ a03100,) b0 1 (05) ELft-+7— 0, 0,) 11— 6]+
0 0 0

+0(e?). (19)

E{,(t) &,(t -+ 7) (1) (¢ +7)]
= fda1 fdez fd63 fdm hy(81) h(85) h(83) 7 (6,)
4] 0 0 0

X E[f(t=0:)ft+7=0:)f (1= 0) 2+ 7—8,)] + ofc). (20)

Provided that the excitation is fully specified, the moments on the right-hand sides of
equations (19) and (20) are known. The integrations in (19) and (20) may then, in principle,
be carried out, and the results substituted into equations (9) and (11) to give the mean
power flow and the autocorrelation of the power flow.

A great simplification occurs if the excitation functions of the different oscillators are
statistically independent of each other—an assumption of the so-called “ energy approach
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to structural vibration (4). In this case all the cross-correlations between the excitation
functions are zero, and, for r #s, equation (19) becomes

Elx(8) %,(+7)]

- E(g f de, f dé, f A0 h(81) h(02) h(63) ELf(t— 01— 0,) f,(t + 7~ 0)] +

+ o, T dé, T dé, f d0s 2,(0,) hy(02) h(83) E[ f(t+7—0,~ 82) [t~ 03)]} + o(€2),
0 1] 0 (21)
or, if this is combined with (5) and (16),
Elx(t)x,(t+7)] = ea,, f d0{h(0,) E[x, (1 —0,) x,,(t+7)] +
+h(01) B[z 47— 01) 2,()]} + 0(€?). (22)

If R, (r) and R, (7) denote the autocorrelation of the responses of the oscillators when
€=0, equation (22) may be written as

Elx(t)x,(t+7)] = eay, fdel{hs(ﬁi) R, (r+80)+

+h,(0;) R, (1—0,)} +0(e?). (23)

Differentiating this expression with respect to 7, making use of the fact that R(r) is an odd .
function of 7, and substituting into (9) gives

1, = 35 e, [ (h(0) R.(6)~h(0) K., (0] A0+ ofe). (24

Equation (24) gives the mean rate of energy flow to the 7th oscillator from all the other
oscillators, correct to order €2 in the coupling parameter e, for the case of uncorrelated
excitation of each oscillator.

Equation (20) may also be greatly simplified if, as well as being statistically independent,
the excitation functions are also Gaussian processes. In this case the fourth-order moment
in (2) may be broken down into second-order moments (5):

E[f(t=0:) [t +7—05) f(t—03) fi(2+7—8,)]
= E[f(t=00)ft+7=0,) E[f(t—03) f{(t+7—0,)] +
+ELfAt =00 [t = 0N E[f{t+7—02) fi(t+7—04)] +
FE[ft=0,) [t +7— 0] E[f(t +7—05) f (£ — 03)]. (25)

Since, from (11), g7 and s 37, equation (25) reduces, if the excitation functions are
statistically independent, to

E[fit=00)ft+7—02)f(—65) f{t+7—06,)]
= E[f,t=00)/(t+7-0)] E[f{t~05) f(t+7—6,)] (26)
and equation (20) may consequently be reduced to

E[2() %t +7)x(t) w(t+7)] = R (7) R, (r) +0(e). (27)




267 POWER FLOW BETWEEN COUPLED OSCILLATORS

Substituting (27) into (11) gives

Ro(r) = @Ry (r) 3 o Rys(r) +0(e%) (28)
=1
sF#r
which, with ( 12), gives
2 ~ n
Sy == | [R&,&r) % o2, Ry (7)o | dr-t ofe?) (29)
™ s=1
- G sF#Er

as the final expression for the spectral density of the power flow to the rth oscillator. It
applies for the case when the excitation functions of the oscillators are mutually indepen-
dent and Gaussian. R;, (r) is the autocorrelation of the derivative of the response of the
rth oscillator when e =0, and R, (7) is the autocorrelation of the sth oscillator when ¢=o.
The answer is correct to order €2 in the coupling parameter e.

MEAN POWER FLOW FOR WHITE NOISE EXCITATION

For the special case of white noise excitation, the expression for mean power flow,
equation (24), may be further simplified. If the natural frequency and damping ratio of the
rth oscillator are 2, and B., where

k c
Q=-7: 28,0 = g (30)

r r

then the autocorrelation of the response to white noise, of spectral density S, is (6)
S,

0.0 {cos VICRQ0+ P sinvisp .Q,a} (31)

D = 2ap i VP
so that
R(0) = ——— T 000/ 1R 000, (32)
20 T a2
The impulse response function is, from equation (14a) (7),
I S
h(0) = e e P I B 4 -B20,6}. (
1) = i P i VIR0, 0) 33)
Substituting (32) and (33) into (24) gives, for the mean power flow,
s o [ Ball)_ReOgp, o0
= 242 XS ek N4 de
1= 5 e, [ o - TeOla o), (34)
s#Er 0
oy 2.2 S, _l‘s_'r_g d6 3
- S e f /z,(H)hs(())Lms e -Q,] + oY), (35)
sy 1]

"T'he term (7S,)/(2m,B,8,) is the mean energy of the rth oscillator, U,, say, when e=o.
Since the total mean energy is twice the mean kinetic energy,

Uy, = m, E[d}]. (36)

"The right-hand side of (36) may be obtained most conveniently from (14a) by multiplying
through by #,, and then averaging to give

¢ Bla.] = E[f,(8)%,(1)] (37)
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since £[&,,%,,] = E[x,,%,] = o for any stationary process.t From (14a)

B(t) = [ h(6)f(t~0)ds, (38)
0
and substituting this into the right-hand side of (37) gives
B[] = [ h(0) BLf(0) f(2-0)] do. (39)
0
For white noise excitation I [FA)f{2—8)] =27S5,5(8), so that (39) becomes
cB[i}] = 2mS, [ h,(0)8(6) do, (40)
0
S,
=T, (41)
n,

since f,(0 —)=o0, h,(0 + )= 1/m,. Substituting (41) into ( 36) then gives, for the mean energy
of the rth oscillator,

@S, S,
U= = ompa, (42)
Putting (42) into (35) gives
I, = 3 @a[U,~ U] [ h()h(0)d8+o(cY). (43)
s=1 hi

The rate of energy flow from the sth to the 7th oscillator is therefore directly proportional
to the difference between the mean energies of the two oscillators. The integral in (43)
may be evaluated by straightforward methods after substituting for 4,(6) and 4,(6) from
(33). The result is

Nl  2B0+8R) ,
=2 U=, [{(ﬂ,sz,-wsw+<z>,—ps>2} {(B,szr+ﬂs@s>2+<p,+ps>2}] *
sy
+o(e%), (44)
where b = ‘Qr'\/:—‘?, b = Qs\/:/-gz

Equation (44) gives, correct to order €, the mean power flow to the rth oscillator from
all the other oscillators. It applies when the excitation of each oscillator is an independent
source of stationary, white noise. Since the term in square brackets in (44) is always
positive, energy always flows from higher to lower energy oscillators. Furthermore, when
two lightly damped oscillators are approximately in tune with each other, p,~p,, then the
denominator inside the square brackets will be small, and the rate of energy transfer in-
creases. To the accuracy of this calculation, therefore, oscillators prefer to share energy,
equipartition of energy being a state of stable equilibrium, and their resistance to energy

T These results are easily proved. Consider E [xx]. For stationary processes,

Elxx] = %E[x(t)x(t—}--r)] = ;;E[x(t—-f)x(t)] = — Exx],
=0 7=0

so that E[xx]=o. Similarly, Efx¥]=o0.
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transfer depends on their natural frequency ratio, going through a minimum when
prpet

EXAMPLE OF TWO COUPLED OSCILLATORS

To illustrate the application of the above results, consider the mechanical model of two
stiffness coupled oscillators shown in Figure 1. If the displacements from static equilibrium
of the two masses are x; and x, and if the external forces F 1(t) and Fy(¢) are applied to the
masses, then the equations of motion are

7’11&1 +C] ;i‘1+(k1+5'y)x1 = I"l(t)+€'yx2,

(45)
n12ﬁ2+czx2+(k2+ey)x2 = Fz(t)+€'}/x1,
which may alternatively be written as
. . Fi) «
¥i+2f1 Q2008+ x; = %*)'F;,%xz»
P e (46)
Xy 42,82, 8,+ R x, = #‘*‘”Z/ 1
2 2

where £ and 8, are, respectively, the “blocked ”” natural frequency and damping ratio
for oscillator 1 with oscillator 2 clamped, as defined by the equations

kitey ¢
QZ = ! —y = ——“‘f.l_:‘:_:: ’
! my A1 2V (ky + ey)m, “7)
and, similarly, £, and B, are the “blocked”’ natural frequency and damping ratio for
oscillator 2 with oscillator 1 clamped, as defined by
ky+ey €,
Q=210 = 8
may 2 2V (ky+ ey) my (48)
It will be assumed that F,(z) and F,(#) are two independent sources of stationary, Gaussian,
white noise random excitation.
Consider the case when only one oscillator is excited. The energy of the other then

arises solely from the power flowing between the two. If F «t)=o, then, from (44), the
power flow to the second oscillator is

. _‘;’zji o 2(B1 2, +B,82,)
27 mm, v “[{(BIQmLﬁQOz)z‘f‘(Pl ”Pz)z}{(19191+/3292)2+(P1+P2)2}]. (49)

This power input is dissipated by the damping of the oscillator, and the mean rate of
power dissipation is

2 E[43) = 2im, 8,8, E[%). (50)
Iquating (49) and (50) allows the mean kinetic energy of the oscillator to be written as
U
o 1 1o I -2 — 24,2 10
T = g E[#] = < 2my iy By 82, x

X[A‘M_ : (B1521+B2525) ] (31)
B1921+B292:)> + (b1 — p2) 3{(B1 21 + B2 22) 7+ (b1 +12) 7} >

1 Subsequent to the preparation of this paper, it has been found that this is an exact result for two coupled
oscillators (8). In the case of strong coupling, the energy in the coupling element itself must be taken into
account and divided up between the oscillators in a particular way. It has not, however, so far been possible
to prove that the result is exact for more than two oscillators.




D. E. NEWLAND 270

If the “blocked ” kinetic energy of the first oscillator is defined as its energy when the
second oscillator is clamped, so that

Tip = m E[22] = U, (52)
equation (51) can be rewritten in non-dimensional form as
Bi 91} ({2_2)2
I, _ 52

. =C {(31+B;2?2)2+(p15f2)2}{(Bl+§f(f2)2+(p~gp—2)2} . (s3)

where the coupling coefficient (C is defined as

2,2 2,2 2,,2

C=__°7 = €Y ~ 5
C GG T vl (et e) = bk (54
In Figure 2, T,/Tyy is shown plotted against the ratio of the natural frequencies £2,/Q,
for the case C=10"5and Bi1=pB,=0-01. As explained in the Appendix, 7',/Tg can, in this
case, be calculated exactly fairly easily, and the exact result is also shown in the inset view
in Figure 2. There is good agreement between the approximate and exact results except

0-015
Approximate
Exact
!
o-012f—-
Q-010
[eXg0]1}
%
T o0l |
18 0488 1:00 -0l
0005
1 ] 1
o] 0-5 1«0 15 20
a2,
Q;l

Figure 2. Mean kinetic energy (T) of the second oscillator in Figure 1, as a function of the ratio
of the oscillator natural frequencies (£2,/£2,), for the case when only the first oscillator is excited with
white noise. (T'jy is the blocked kinetic energy of the first oscillator under the same excitation,

20,2
C= Y 1658, =8, = oor.
C i BB 1075, B = B, = oo1.)

where the two natural frequencies are almost exactly the same, £2,~2,. There is then

considerable excitation of the second oscillator, which causes a corresponding reduction

in the energy of the first. This reduction is not allowed for in the approximate theory.
The energy of the first oscillator may easily be calculated once that of the secand is
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known. By the conservation of energy, the mean rate of energy dissipation of both oscil-
lators,

¢ E[#f]+c, B3], (55)
must be equal to the mean rate of energy input from the external force F,(t), which is
Ef2,(t) F1(1)]. (56)

For white noise excitation of spectral density S, (56) may be evaluated along the lines of
equations (37)—(41) to find

El,(t) Fi(8)] = mSy o 1(t=0+), (57)

where # 1(2) is now the response %(t) as a result of a unit impulse input Fy(#)=8(z).

[ 1(7) in general differs from /,(#), which is the impulse response for #(#) with the second
oscillator clamped.] From the first of (45)

Hi(t=0+) = -, (58)
mq
giving
. Lg
Ela(t) Fy(0)] = 721 (59)
ny
Equating (55) and (59) for the conservation of energy then gives
Cq E[xf] +¢y E[x%] = T“;;*S?] ’ (60)
1

which, after some rearrangement, may be written as

7TS1

8242,
Ty+5— 2T = .71 |
! 2 qmy B8,

B2,

L BTy
Ty Bi1éi Typ’
Equation (62) is an exact result which is independent of the magnitude of the coupling.

In Figure 3 the energies of both oscillators are shown for a more strongly coupled
system than that of Figure 2. In this case (C = 10~* instead of 1073, while 8; =8,=0-01 as
before. There is a marked reduction in the energy of the first oscillator, as it loses energy
to the second when their natural frequencies are approximately the same. For the approxi-
mate theory to be accurate, the coupling must be sufficiently small that the loading effect
of one oscillator on the other does not cause the kinetic energy difference (1", —7,) to
differ significantly from (T'1g~ Typ), where Ty and Ty, are the “blocked”” values for the
kinetic energies. In many practical cases in which the aim is to prevent the transmission of
noise energy from one structure to another this is often a realistic assumption.

It is interesting to note that the approximate result obtained here for the mean power
flow between two oscillators is identical with that obtained by Lyon and Maidanik (1)
using a different method of approximation. The discrepancy between the approximate
and exact results illustrated above is thus also a feature of the earlier analysis. The advant-
ages of the present method (as an additional tool in the study of the random vibration of
coupled oscillator systems) lie in its usefulness in allowing the approximations made to
remain more readily apparent, in its capability of being extended to second and higher
order approximations if greater accuracy is needed, and in its applications to the calcula-
tion of statistics more complicated than those of mean power flow. As an illustration of the

(61)
or, using (42) and (52),
(62)




D. E. NEWLAND 272

last, the spectrum of the power flow between the two oscillators of Figure 1 is calculated
below for the case when both oscillators are excited.

100 T T

0-95t—

Approximate

0:05}-

o
)
@
]
o
N
-+

EIEP

Figure 3. Mean kinetic energies of both oscillators when only the first is excited with white
noise. ({C = 104, Bi=B,=001.)

From the general result of equation (29), since both Ry, () and R, (7)are even functions
of 7, the spectral density of the power flow may be written as

2.2 S
Spe) = f Re(7) R () cos aor dr, (63)
s
1]
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For stationary white noise excitation, from the result that

Refr) = E[,(0%,(47)] = S L, ()5, (4], (64)
d . .
= 3 Elt—7) % (1)), (65)
d?
= ~ gLl (-7 x,0)l (66)
= = Rxlu(f), (67)
and from the expressions for R,, (r), R,,(7) in equation (31,) then
N ™58, (Bt Befe)r
Snl) = h .2, 0 f ‘ "
X {cosp, T— Vﬁgﬁ sinp —r} {cosp7 T+ - B e smpz -r} cos wr dr, (68)
and multiplying out and evaluating the integrals gives
Sm(w) (CTIB Typ 91
B1B: )
X lr—— =t X
( \/1 _Bz V- _/82
Q 0
ﬁl'*'ﬁZ'"z :81+132 2

X

por T BT B

vl

:81‘*‘3251 /91‘*'52:9“

(R 2 e R e Y
+(\7§%73; x/fl—;%)x

Pr1tprtw Pr1+pr—ow
.Q1 Q]

(poeeag) (55T (ool (5]

(\/fiﬁz \/xﬁl—ﬁz)

X

Pa—pitw Pa=pr—
5 2, 2
pz p1+w P2_P1—w : '
BT T P
where again p, =Q,V1— B3, p,= 2,1 — B2 (69)
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The spectral density S (w) =2, Sr (w/Q;) is shown plotted against /2, in Figure 4 for
the case £2,/Q2; = 0-9 and f; =B, =o0-o1. There are ‘‘ resonance-like ” peaks in the spectrum
atw |p,—pq| and at w~|p,+p,|. The power flow thus has a low frequency component,
whose centre frequency approaches zero when p,—>p,. There is then a very slow cycling
of energy backwards and forwards between the two oscillators. Even though their mean
energies may be the same, so that no net power flow occurs, there is nevertheless a steady
flow of energy backwards and forwards so that the energy of one oscillator slowly builds
up while the other dies down and vice versa. This phenomenon is, of course, closely
related to the well-known performance of the system in free vibration (g).

20
=}
B
W
-l
S
2 1o
3
3
79
[} (T s A Loy i 1 3 - AL
22 -20 -1-8 =6 v —-04 -0-2 (¢} 0-2 04 -6 1-8 20 22
ho
‘QI

Figure 4. Mean square spectral density of the power flow to oscillator 1, from oscillator 2,
Sm(w) when both are excited by independent sources of Gaussian white noise.(T'; and T, are
the blocked mean kinetic energies of the two oscillators under the same excitation,

2,182 =09, B1=B,=001)

CONCLUSION

An approximate perturbation method has been developed to calculate the statistics of
the power flow between randomly excited, weakly coupled oscillators. This has been
applied to calculate the mean power flow between two stiffness coupled oscillators,
Although there is also an exact solution for this problem, for more complicated cases,
involving more oscillators or higher order statistics, the exact solution is prohibitively
involved, whereas the approximate method developed here is directly applicable, As an
example, the spectral density of the power flow between two coupled oscillators has been
calculated. 'The method shows good promise as an additional tool for the study of noise
transmission in structures, and it is hoped that later publications will deal with this
development. The important general results that have been derived here by using the
method are that, subject to assumptions and approximations explained in the paper,
(a) energy always flows in the direction of the energy gradient, (b) the mean power flow
between oscillators is only significant when they have approximately the same natural
frequencies, and (c) that energy can cycle slowly backwards and forwards between two
oscillators at a low frequency, of the order of the difference between the two oscillator
natural frequencies.
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APPENDIX: EXACT CALCULATION OF THE MEAN KINETIC ENERGY OF
A COUPLED OSCILLATOR

For the system shown in Figure 1, when F,(¢)=o0,

Fit
5{31+2B1.Q].7é1+Q:1"x1 = %-{-ez'mz,
1

(70)
.5c'2+252929€2+9%x2 = 61 X1,
"y
where £, £2,, 8, and 8, are defined by equations (47) and (48). Eliminating x; between
equations (70) gives
My My
where

A = 2(B12,+B,02)),
B = (Qi+25+4B18.21£,),

C = 20, 2,(8,92,+8,8y), (72)
2,2
D=@-Y .
mymy
The response x,(¢) to a harmonic input
Fyt) = e’ (73)
is given by 4
0o(t) = H{w) e (74)

where H(w) is the complex frequency response function for x,. Substituting (73) and (74)
into (71) gives

€Y
my M,

wt—iw* A—?B+iwC+D’ (75)

H(w) =
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'The mean square velocity E[42] is then given by (10)

B[] = [ liwH(w)|? Sp,(w) dw (76)
where Sy (w) is the mean square spectral density of the input force F,(¢). For white noise
excitation, Sp,(w) =S|, the integral in (76) may be evaluated by standard methods, and the
results for such integrals have been tabulated (11) giving

2,2
7; 3;2 A'TTS1
2] = 172 . }
E[43] TAB=—C D (77
"The mean kinetic energy of the second oscillator is consequently
Y AT 2.2 TTS‘ A o
T, = ymy E[#}] = 2y Zmzm%[c( AB—0)~D Az] (78)

which, after a good deal of algebra, reduces to

e (o) (55

B T e v e v e

with, as before,

€22 2y?
T omyma SR T Rk, (54)
This may be compared with the simpler approximate expression (53) for the same result.
Equation (79) has been used to obtain the exact results shown in Figures 2 and 3.




