

Central Europe towards Sustainable Building 2016 Innovations for Sustainable Future

Development and performance of a curtain wall system using modern wood products and other progressive **materials with respect to the environment**

Jan TYWONIAK, Antonín LUPÍŠEK, Michal BUREŠ, Martin VOLF

University Centre for Energy Efficient Buildings, ČVUT, antonin.lupisek@cvut.cz

INTRODUCTION

Faculty of Civil Engineering The State State Buildings University Centre for Energy Efficient Buildings

BACKGROUND

EU targets

- **20% reduction in primary energy** consumption in EU until 2020
- Focus on sectors with the highest saving potential for the lowest investment – transportation and **construction industry**

EU Building stock

- 25 % non-residential
- 45 % built between 1961 and 1990

SCOPE

Central European non-residential buildings built in $1960's - 1980's$ featuring light curtain walls

Typical for:

- § schools
- § kindergartens
- § office buildings
- medical centers
- firemen and police stations
- railway facilities
- hotels
- § restaurants

Public elementary school in Pilsen

m **Elementary school in Prague**

Office building in Köln am Rhein

TYPICAL ISSUES OF CURTAIN WALLS

- Insufficient thermal insulation and insufficient air tightness and related winter discomfort and high operation cost
- Lack of shading devices resulting in summer overheating
- **Malfunction of window hinges and locks** rendering some windows out of order
- Asbestos contents and related health risks
- **Glazing units failures, failures of fixing** and seal elements, water leakages
- Faded colors, obsolete look and loss of attractiveness for potential tenants

TYPICAL RENOVATION SCENARIOS

§ **Low-cost scenario**

Application of a supplemental cladding

(when existing framing is in good shape and capable of supporting additional layers)

§ **Economic scenario**

Curtain wall replacement by mullion walls made of light autoclaved aerated concrete bricks with external thermal insulation system (ETICS) and plastic windows

§ **Standard scenario**

Complete removal of the existing CW and replacement by modern CW system (usually aluminium or steel)

 $U_{\text{em}} \approx 3.0 \text{ W/(m²K)}$ Opaque $U = 0.6$ Glazing $U = 4.0$

 $U_{\rm em}$ ≈ **0.7** W/(m²K) Opaque $U = 0.19$ Glazing $U = 0.5$ (+ thermal couplings) Metals have drawbacks in vulnerability to systematic thermal bridges due to their high thermal conductivity and significant environmental impacts

Could we make it better?

R&D objectives:

- Lower environmental impacts in comparison with conventional CWs
- Over 50% of the mass to consist of renewable materials \bullet
- **Maximum utilization of local materials**
- The CW production technology to generate minimum waste
- **Easy maintenance** \bullet
- Dismantling and recyclability of the CW to be as simple as \bullet possible

Design strategies for reduction of embodied energy and embodied carbon

- Reduction of amount of needed materials throughout entire life cycle
- \blacksquare Substitution of traditional materials for alternatives with lower environmental impacts
- Reduction of construction stage impact

 \rightarrow More details at www.annex57.org

DESIGN STRATEGY

Substitution of traditional materials for alternatives with lower environmental impacts

- **Frame:** laminated veneer lumber (LVL)
- **Plates:** DHF fibreborad, OSB
- **Thermal insulation:** wood fiber 240 mm, vacuum panels, cork
- **External cover:** Thermowood
- **Windows:** wooden, triple glazing, PHI certified
- **Shading devices:** integrated venetian blinds
- **Renewables:** BIPV

DESIGN STRATEGY

Reduction of construction site impact

4 steps of assembly onsite

SAMPLING AND PROTOTYPING

SAMPLING AND PROTOTYPING

SKETCHING AND MODELLING

SIMULATIONS

Joint of two panels (horizontal section)

FINAL DESIGN

WOODEN WINDOW TRIPLE - GLAZED **RUBBER SEALING** FIXED IN ALUMINIUM PROFILE **HEAT INSULATION LAYER WOOD FIBRE CONSTRUCTION BOARD WOOD FIBRE CEILING STRUCTURE LOAD BEARING CONNECTING ELEMENT ADJUSTABLE** THERMAL INSULATION LAYER **CORK BOARD EXTERNAL BLINDS REMOTE CONTROLLED EXTERNAL CLADDING THERMOWOOD VENTILATED FACADE** PHOTOVOLTAIC PANEL **BEARING FRAME LAMINATED VENEER LUMBER**

AIR-TIGHT LAYER ORIENTED STRAND BOARD

FULL-SCALE ASSEMBLY AND MONITORING

FULL-SCALE ASSEMBLY AND MONITORING

FULL-SCALE ASSEMBLY AND MONITORING

LIFE CYCLE ASSESSMENT

Functional unit: 1 CW panel with of 3.3×1.5 meters with an integrated transparent part (window of 1.8 m^2) and thermal performance expressed by thermal transmittance of $U = 0.57 W/m^2K$.

TESTING OF AIR- AND WATER-TIGHTNESS

Průvzdušnost dodaného vzorku [m3/h]

TESTING OF AIR- AND WATER-TIGHTNESS

- Air intake: --
- Water intake: only in horizontal joint without airstop tapes, only for gap 12 mm by pressure 1200 Pa \rightarrow improved design

TESTING OF ACOUSTIC PROPERTIES

Opaque panel

 R_w (*C*; C_{tr}) = **41** (-2; -6) dB

TESTING OF ACOUSTIC PROPERTIES

Transparent panel

 R_w (*C*; C_{tr}) = 38 (-2; -5) dB

Required airborne sound insulation of external walls, R'_{w} (dB)

FIRE RESISTANCE

FIRE RESISTANT VERSION

National limitations for timber structures:

- Max height 12 m above ground (without active fire protection systems)
- **E** Restrictions on min distance to other buildings can be reduced, if EI(W) 45 **min. is reached**
- \rightarrow Design of fire resistant alternative

Alterations

- **OSBs replaced by gypsum and** cement boards
- **•** Added expandable strips in joints

Measured fire resistance (according to CSN EN 1364-3:2014)

- Fire from exterior side at least **90 min** EI(I<O) 90 DP3
- Fire from interior side at least **60 min** EI(I>O) 60 DP3

LARGE SCALE PILOT

885

CONCLUSIONS

-
- **Alternative building envelope system has been successfully** developed, tested and is being brought to market
- The project proved that bio-based envelopes for buildings represent a viable alternative to the traditional metallic systems
- Synergy of natural materials with advanced technologies is viable way to explore
- Designed envelope system matches or surpasses the state of the art in technical parameters and decreases the environmental impacts at the same moment
- Building envelope design is a complex task, requires multidisciplinary team and close cooperation with testing facilities

